amxmodx/third_party/hashing/hashers/sha1.cpp

321 lines
8.1 KiB
C++
Raw Permalink Normal View History

// //////////////////////////////////////////////////////////
// sha1.cpp
2016-08-22 09:21:46 +00:00
// Copyright (c) 2014,2015 Stephan Brumme. All rights reserved.
// see http://create.stephan-brumme.com/disclaimer.html
//
#include "sha1.h"
/// same as reset()
SHA1::SHA1()
{
reset();
}
/// restart
void SHA1::reset()
{
m_numBytes = 0;
m_bufferSize = 0;
// according to RFC 1321
m_hash[0] = 0x67452301;
m_hash[1] = 0xefcdab89;
m_hash[2] = 0x98badcfe;
m_hash[3] = 0x10325476;
m_hash[4] = 0xc3d2e1f0;
}
namespace
{
// mix functions for processBlock()
inline uint32_t f1(uint32_t b, uint32_t c, uint32_t d)
{
return d ^ (b & (c ^ d)); // original: f = (b & c) | ((~b) & d);
}
inline uint32_t f2(uint32_t b, uint32_t c, uint32_t d)
{
return b ^ c ^ d;
}
inline uint32_t f3(uint32_t b, uint32_t c, uint32_t d)
{
return (b & c) | (b & d) | (c & d);
}
inline uint32_t rotate(uint32_t a, uint32_t c)
{
return (a << c) | (a >> (32 - c));
}
inline uint32_t swap(uint32_t x)
{
#if defined(__GNUC__) || defined(__clang__)
return __builtin_bswap32(x);
#endif
#ifdef _MSC_VER
return _byteswap_ulong(x);
#endif
return (x >> 24) |
((x >> 8) & 0x0000FF00) |
((x << 8) & 0x00FF0000) |
(x << 24);
}
}
/// process 64 bytes
void SHA1::processBlock(const void* data)
{
// get last hash
uint32_t a = m_hash[0];
uint32_t b = m_hash[1];
uint32_t c = m_hash[2];
uint32_t d = m_hash[3];
uint32_t e = m_hash[4];
// data represented as 16x 32-bit words
const uint32_t* input = (uint32_t*) data;
// convert to big endian
uint32_t words[80];
for (int i = 0; i < 16; i++)
#if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && (__BYTE_ORDER == __BIG_ENDIAN)
words[i] = input[i];
#else
words[i] = swap(input[i]);
#endif
// extend to 80 words
for (int i = 16; i < 80; i++)
words[i] = rotate(words[i-3] ^ words[i-8] ^ words[i-14] ^ words[i-16], 1);
// first round
for (int i = 0; i < 4; i++)
{
int offset = 5*i;
e += rotate(a,5) + f1(b,c,d) + words[offset ] + 0x5a827999; b = rotate(b,30);
d += rotate(e,5) + f1(a,b,c) + words[offset+1] + 0x5a827999; a = rotate(a,30);
c += rotate(d,5) + f1(e,a,b) + words[offset+2] + 0x5a827999; e = rotate(e,30);
b += rotate(c,5) + f1(d,e,a) + words[offset+3] + 0x5a827999; d = rotate(d,30);
a += rotate(b,5) + f1(c,d,e) + words[offset+4] + 0x5a827999; c = rotate(c,30);
}
// second round
for (int i = 4; i < 8; i++)
{
int offset = 5*i;
e += rotate(a,5) + f2(b,c,d) + words[offset ] + 0x6ed9eba1; b = rotate(b,30);
d += rotate(e,5) + f2(a,b,c) + words[offset+1] + 0x6ed9eba1; a = rotate(a,30);
c += rotate(d,5) + f2(e,a,b) + words[offset+2] + 0x6ed9eba1; e = rotate(e,30);
b += rotate(c,5) + f2(d,e,a) + words[offset+3] + 0x6ed9eba1; d = rotate(d,30);
a += rotate(b,5) + f2(c,d,e) + words[offset+4] + 0x6ed9eba1; c = rotate(c,30);
}
// third round
for (int i = 8; i < 12; i++)
{
int offset = 5*i;
e += rotate(a,5) + f3(b,c,d) + words[offset ] + 0x8f1bbcdc; b = rotate(b,30);
d += rotate(e,5) + f3(a,b,c) + words[offset+1] + 0x8f1bbcdc; a = rotate(a,30);
c += rotate(d,5) + f3(e,a,b) + words[offset+2] + 0x8f1bbcdc; e = rotate(e,30);
b += rotate(c,5) + f3(d,e,a) + words[offset+3] + 0x8f1bbcdc; d = rotate(d,30);
a += rotate(b,5) + f3(c,d,e) + words[offset+4] + 0x8f1bbcdc; c = rotate(c,30);
}
// fourth round
for (int i = 12; i < 16; i++)
{
int offset = 5*i;
e += rotate(a,5) + f2(b,c,d) + words[offset ] + 0xca62c1d6; b = rotate(b,30);
d += rotate(e,5) + f2(a,b,c) + words[offset+1] + 0xca62c1d6; a = rotate(a,30);
c += rotate(d,5) + f2(e,a,b) + words[offset+2] + 0xca62c1d6; e = rotate(e,30);
b += rotate(c,5) + f2(d,e,a) + words[offset+3] + 0xca62c1d6; d = rotate(d,30);
a += rotate(b,5) + f2(c,d,e) + words[offset+4] + 0xca62c1d6; c = rotate(c,30);
}
// update hash
m_hash[0] += a;
m_hash[1] += b;
m_hash[2] += c;
m_hash[3] += d;
m_hash[4] += e;
}
/// add arbitrary number of bytes
void SHA1::add(const void* data, size_t numBytes)
{
const uint8_t* current = (const uint8_t*) data;
if (m_bufferSize > 0)
{
while (numBytes > 0 && m_bufferSize < BlockSize)
{
m_buffer[m_bufferSize++] = *current++;
numBytes--;
}
}
// full buffer
if (m_bufferSize == BlockSize)
{
processBlock((void*)m_buffer);
m_numBytes += BlockSize;
m_bufferSize = 0;
}
// no more data ?
if (numBytes == 0)
return;
// process full blocks
while (numBytes >= BlockSize)
{
processBlock(current);
current += BlockSize;
m_numBytes += BlockSize;
numBytes -= BlockSize;
}
// keep remaining bytes in buffer
while (numBytes > 0)
{
m_buffer[m_bufferSize++] = *current++;
numBytes--;
}
}
/// process final block, less than 64 bytes
void SHA1::processBuffer()
{
// the input bytes are considered as bits strings, where the first bit is the most significant bit of the byte
// - append "1" bit to message
// - append "0" bits until message length in bit mod 512 is 448
// - append length as 64 bit integer
// number of bits
size_t paddedLength = m_bufferSize * 8;
// plus one bit set to 1 (always appended)
paddedLength++;
// number of bits must be (numBits % 512) = 448
size_t lower11Bits = paddedLength & 511;
if (lower11Bits <= 448)
paddedLength += 448 - lower11Bits;
else
paddedLength += 512 + 448 - lower11Bits;
// convert from bits to bytes
paddedLength /= 8;
// only needed if additional data flows over into a second block
unsigned char extra[BlockSize];
// append a "1" bit, 128 => binary 10000000
if (m_bufferSize < BlockSize)
m_buffer[m_bufferSize] = 128;
else
extra[0] = 128;
size_t i;
for (i = m_bufferSize + 1; i < BlockSize; i++)
m_buffer[i] = 0;
for (; i < paddedLength; i++)
extra[i - BlockSize] = 0;
// add message length in bits as 64 bit number
uint64_t msgBits = 8 * (m_numBytes + m_bufferSize);
// find right position
unsigned char* addLength;
if (paddedLength < BlockSize)
addLength = m_buffer + paddedLength;
else
addLength = extra + paddedLength - BlockSize;
// must be big endian
2016-08-22 09:21:46 +00:00
*addLength++ = (unsigned char)((msgBits >> 56) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 48) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 40) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 32) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 24) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 16) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 8) & 0xFF);
*addLength = (unsigned char)( msgBits & 0xFF);
// process blocks
processBlock(m_buffer);
// flowed over into a second block ?
if (paddedLength > BlockSize)
processBlock(extra);
}
2016-08-22 09:21:46 +00:00
/// return latest hash as 40 hex characters
const char* SHA1::getHash()
{
2016-08-22 09:21:46 +00:00
// compute hash (as raw bytes)
unsigned char rawHash[HashBytes];
getHash(rawHash);
// convert to hex string
static char result[40+1];
size_t written = 0;
for (int i = 0; i < HashBytes; i++)
{
static const char dec2hex[16+1] = "0123456789abcdef";
result[written++] = dec2hex[(rawHash[i] >> 4) & 15];
result[written++] = dec2hex[ rawHash[i] & 15];
}
result[written] = 0;
return const_cast<const char *>(result);
}
2016-08-22 09:21:46 +00:00
/// return latest hash as bytes
void SHA1::getHash(unsigned char buffer[SHA1::HashBytes])
{
// save old hash if buffer is partially filled
uint32_t oldHash[HashValues];
for (int i = 0; i < HashValues; i++)
oldHash[i] = m_hash[i];
// process remaining bytes
processBuffer();
2016-08-22 09:21:46 +00:00
unsigned char* current = buffer;
for (int i = 0; i < HashValues; i++)
{
2016-08-22 09:21:46 +00:00
*current++ = (m_hash[i] >> 24) & 0xFF;
*current++ = (m_hash[i] >> 16) & 0xFF;
*current++ = (m_hash[i] >> 8) & 0xFF;
*current++ = m_hash[i] & 0xFF;
// restore old hash
m_hash[i] = oldHash[i];
}
}
/// compute SHA1 of a memory block
const char* SHA1::operator()(const void* data, size_t numBytes)
{
reset();
add(data, numBytes);
return getHash();
}
/// compute SHA1 of a string, excluding final zero
const char* SHA1::operator()(const char* text, size_t size)
{
reset();
add(text, size);
return getHash();
}