amxmodx/tools/pcre/sljit/sljitNativeARM_v5.c

2516 lines
75 KiB
C
Raw Permalink Normal View History

/*
* Stack-less Just-In-Time compiler
*
* Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void)
{
#if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
return "ARMv7" SLJIT_CPUINFO;
#elif (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
return "ARMv5" SLJIT_CPUINFO;
#else
#error "Internal error: Unknown ARM architecture"
#endif
}
/* Last register + 1. */
#define TMP_REG1 (SLJIT_NO_REGISTERS + 1)
#define TMP_REG2 (SLJIT_NO_REGISTERS + 2)
#define TMP_REG3 (SLJIT_NO_REGISTERS + 3)
#define TMP_PC (SLJIT_NO_REGISTERS + 4)
#define TMP_FREG1 (0)
#define TMP_FREG2 (SLJIT_FLOAT_REG6 + 1)
/* In ARM instruction words.
Cache lines are usually 32 byte aligned. */
#define CONST_POOL_ALIGNMENT 8
#define CONST_POOL_EMPTY 0xffffffff
#define ALIGN_INSTRUCTION(ptr) \
(sljit_uw*)(((sljit_uw)(ptr) + (CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1) & ~((CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1))
#define MAX_DIFFERENCE(max_diff) \
(((max_diff) / (sljit_si)sizeof(sljit_uw)) - (CONST_POOL_ALIGNMENT - 1))
/* See sljit_emit_enter and sljit_emit_op0 if you want to change them. */
static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 5] = {
0, 0, 1, 2, 10, 11, 4, 5, 6, 7, 8, 13, 3, 12, 14, 15
};
#define RM(rm) (reg_map[rm])
#define RD(rd) (reg_map[rd] << 12)
#define RN(rn) (reg_map[rn] << 16)
/* --------------------------------------------------------------------- */
/* Instrucion forms */
/* --------------------------------------------------------------------- */
/* The instruction includes the AL condition.
INST_NAME - CONDITIONAL remove this flag. */
#define COND_MASK 0xf0000000
#define CONDITIONAL 0xe0000000
#define PUSH_POOL 0xff000000
/* DP - Data Processing instruction (use with EMIT_DATA_PROCESS_INS). */
#define ADC_DP 0x5
#define ADD_DP 0x4
#define AND_DP 0x0
#define B 0xea000000
#define BIC_DP 0xe
#define BL 0xeb000000
#define BLX 0xe12fff30
#define BX 0xe12fff10
#define CLZ 0xe16f0f10
#define CMP_DP 0xa
#define BKPT 0xe1200070
#define EOR_DP 0x1
#define MOV_DP 0xd
#define MUL 0xe0000090
#define MVN_DP 0xf
#define NOP 0xe1a00000
#define ORR_DP 0xc
#define PUSH 0xe92d0000
#define POP 0xe8bd0000
#define RSB_DP 0x3
#define RSC_DP 0x7
#define SBC_DP 0x6
#define SMULL 0xe0c00090
#define SUB_DP 0x2
#define UMULL 0xe0800090
#define VABS_F32 0xeeb00ac0
#define VADD_F32 0xee300a00
#define VCMP_F32 0xeeb40a40
#define VDIV_F32 0xee800a00
#define VMOV_F32 0xeeb00a40
#define VMRS 0xeef1fa10
#define VMUL_F32 0xee200a00
#define VNEG_F32 0xeeb10a40
#define VSTR_F32 0xed000a00
#define VSUB_F32 0xee300a40
#if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
/* Arm v7 specific instructions. */
#define MOVW 0xe3000000
#define MOVT 0xe3400000
#define SXTB 0xe6af0070
#define SXTH 0xe6bf0070
#define UXTB 0xe6ef0070
#define UXTH 0xe6ff0070
#endif
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
static sljit_si push_cpool(struct sljit_compiler *compiler)
{
/* Pushing the constant pool into the instruction stream. */
sljit_uw* inst;
sljit_uw* cpool_ptr;
sljit_uw* cpool_end;
sljit_si i;
/* The label could point the address after the constant pool. */
if (compiler->last_label && compiler->last_label->size == compiler->size)
compiler->last_label->size += compiler->cpool_fill + (CONST_POOL_ALIGNMENT - 1) + 1;
SLJIT_ASSERT(compiler->cpool_fill > 0 && compiler->cpool_fill <= CPOOL_SIZE);
inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
FAIL_IF(!inst);
compiler->size++;
*inst = 0xff000000 | compiler->cpool_fill;
for (i = 0; i < CONST_POOL_ALIGNMENT - 1; i++) {
inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
FAIL_IF(!inst);
compiler->size++;
*inst = 0;
}
cpool_ptr = compiler->cpool;
cpool_end = cpool_ptr + compiler->cpool_fill;
while (cpool_ptr < cpool_end) {
inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
FAIL_IF(!inst);
compiler->size++;
*inst = *cpool_ptr++;
}
compiler->cpool_diff = CONST_POOL_EMPTY;
compiler->cpool_fill = 0;
return SLJIT_SUCCESS;
}
static sljit_si push_inst(struct sljit_compiler *compiler, sljit_uw inst)
{
sljit_uw* ptr;
if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)))
FAIL_IF(push_cpool(compiler));
ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
FAIL_IF(!ptr);
compiler->size++;
*ptr = inst;
return SLJIT_SUCCESS;
}
static sljit_si push_inst_with_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal)
{
sljit_uw* ptr;
sljit_uw cpool_index = CPOOL_SIZE;
sljit_uw* cpool_ptr;
sljit_uw* cpool_end;
sljit_ub* cpool_unique_ptr;
if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)))
FAIL_IF(push_cpool(compiler));
else if (compiler->cpool_fill > 0) {
cpool_ptr = compiler->cpool;
cpool_end = cpool_ptr + compiler->cpool_fill;
cpool_unique_ptr = compiler->cpool_unique;
do {
if ((*cpool_ptr == literal) && !(*cpool_unique_ptr)) {
cpool_index = cpool_ptr - compiler->cpool;
break;
}
cpool_ptr++;
cpool_unique_ptr++;
} while (cpool_ptr < cpool_end);
}
if (cpool_index == CPOOL_SIZE) {
/* Must allocate a new entry in the literal pool. */
if (compiler->cpool_fill < CPOOL_SIZE) {
cpool_index = compiler->cpool_fill;
compiler->cpool_fill++;
}
else {
FAIL_IF(push_cpool(compiler));
cpool_index = 0;
compiler->cpool_fill = 1;
}
}
SLJIT_ASSERT((inst & 0xfff) == 0);
ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
FAIL_IF(!ptr);
compiler->size++;
*ptr = inst | cpool_index;
compiler->cpool[cpool_index] = literal;
compiler->cpool_unique[cpool_index] = 0;
if (compiler->cpool_diff == CONST_POOL_EMPTY)
compiler->cpool_diff = compiler->size;
return SLJIT_SUCCESS;
}
static sljit_si push_inst_with_unique_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal)
{
sljit_uw* ptr;
if (SLJIT_UNLIKELY((compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)) || compiler->cpool_fill >= CPOOL_SIZE))
FAIL_IF(push_cpool(compiler));
SLJIT_ASSERT(compiler->cpool_fill < CPOOL_SIZE && (inst & 0xfff) == 0);
ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
FAIL_IF(!ptr);
compiler->size++;
*ptr = inst | compiler->cpool_fill;
compiler->cpool[compiler->cpool_fill] = literal;
compiler->cpool_unique[compiler->cpool_fill] = 1;
compiler->cpool_fill++;
if (compiler->cpool_diff == CONST_POOL_EMPTY)
compiler->cpool_diff = compiler->size;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_si prepare_blx(struct sljit_compiler *compiler)
{
/* Place for at least two instruction (doesn't matter whether the first has a literal). */
if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4088)))
return push_cpool(compiler);
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_si emit_blx(struct sljit_compiler *compiler)
{
/* Must follow tightly the previous instruction (to be able to convert it to bl instruction). */
SLJIT_ASSERT(compiler->cpool_diff == CONST_POOL_EMPTY || compiler->size - compiler->cpool_diff < MAX_DIFFERENCE(4092));
return push_inst(compiler, BLX | RM(TMP_REG1));
}
static sljit_uw patch_pc_relative_loads(sljit_uw *last_pc_patch, sljit_uw *code_ptr, sljit_uw* const_pool, sljit_uw cpool_size)
{
sljit_uw diff;
sljit_uw ind;
sljit_uw counter = 0;
sljit_uw* clear_const_pool = const_pool;
sljit_uw* clear_const_pool_end = const_pool + cpool_size;
SLJIT_ASSERT(const_pool - code_ptr <= CONST_POOL_ALIGNMENT);
/* Set unused flag for all literals in the constant pool.
I.e.: unused literals can belong to branches, which can be encoded as B or BL.
We can "compress" the constant pool by discarding these literals. */
while (clear_const_pool < clear_const_pool_end)
*clear_const_pool++ = (sljit_uw)(-1);
while (last_pc_patch < code_ptr) {
/* Data transfer instruction with Rn == r15. */
if ((*last_pc_patch & 0x0c0f0000) == 0x040f0000) {
diff = const_pool - last_pc_patch;
ind = (*last_pc_patch) & 0xfff;
/* Must be a load instruction with immediate offset. */
SLJIT_ASSERT(ind < cpool_size && !(*last_pc_patch & (1 << 25)) && (*last_pc_patch & (1 << 20)));
if ((sljit_si)const_pool[ind] < 0) {
const_pool[ind] = counter;
ind = counter;
counter++;
}
else
ind = const_pool[ind];
SLJIT_ASSERT(diff >= 1);
if (diff >= 2 || ind > 0) {
diff = (diff + ind - 2) << 2;
SLJIT_ASSERT(diff <= 0xfff);
*last_pc_patch = (*last_pc_patch & ~0xfff) | diff;
}
else
*last_pc_patch = (*last_pc_patch & ~(0xfff | (1 << 23))) | 0x004;
}
last_pc_patch++;
}
return counter;
}
/* In some rare ocasions we may need future patches. The probability is close to 0 in practice. */
struct future_patch {
struct future_patch* next;
sljit_si index;
sljit_si value;
};
static SLJIT_INLINE sljit_si resolve_const_pool_index(struct future_patch **first_patch, sljit_uw cpool_current_index, sljit_uw *cpool_start_address, sljit_uw *buf_ptr)
{
sljit_si value;
struct future_patch *curr_patch, *prev_patch;
/* Using the values generated by patch_pc_relative_loads. */
if (!*first_patch)
value = (sljit_si)cpool_start_address[cpool_current_index];
else {
curr_patch = *first_patch;
prev_patch = 0;
while (1) {
if (!curr_patch) {
value = (sljit_si)cpool_start_address[cpool_current_index];
break;
}
if ((sljit_uw)curr_patch->index == cpool_current_index) {
value = curr_patch->value;
if (prev_patch)
prev_patch->next = curr_patch->next;
else
*first_patch = curr_patch->next;
SLJIT_FREE(curr_patch);
break;
}
prev_patch = curr_patch;
curr_patch = curr_patch->next;
}
}
if (value >= 0) {
if ((sljit_uw)value > cpool_current_index) {
curr_patch = (struct future_patch*)SLJIT_MALLOC(sizeof(struct future_patch));
if (!curr_patch) {
while (*first_patch) {
curr_patch = *first_patch;
*first_patch = (*first_patch)->next;
SLJIT_FREE(curr_patch);
}
return SLJIT_ERR_ALLOC_FAILED;
}
curr_patch->next = *first_patch;
curr_patch->index = value;
curr_patch->value = cpool_start_address[value];
*first_patch = curr_patch;
}
cpool_start_address[value] = *buf_ptr;
}
return SLJIT_SUCCESS;
}
#else
static sljit_si push_inst(struct sljit_compiler *compiler, sljit_uw inst)
{
sljit_uw* ptr;
ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
FAIL_IF(!ptr);
compiler->size++;
*ptr = inst;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_si emit_imm(struct sljit_compiler *compiler, sljit_si reg, sljit_sw imm)
{
FAIL_IF(push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff)));
return push_inst(compiler, MOVT | RD(reg) | ((imm >> 12) & 0xf0000) | ((imm >> 16) & 0xfff));
}
#endif
static SLJIT_INLINE sljit_si detect_jump_type(struct sljit_jump *jump, sljit_uw *code_ptr, sljit_uw *code)
{
sljit_sw diff;
if (jump->flags & SLJIT_REWRITABLE_JUMP)
return 0;
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
if (jump->flags & IS_BL)
code_ptr--;
if (jump->flags & JUMP_ADDR)
diff = ((sljit_sw)jump->u.target - (sljit_sw)(code_ptr + 2));
else {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
diff = ((sljit_sw)(code + jump->u.label->size) - (sljit_sw)(code_ptr + 2));
}
/* Branch to Thumb code has not been optimized yet. */
if (diff & 0x3)
return 0;
diff >>= 2;
if (jump->flags & IS_BL) {
if (diff <= 0x01ffffff && diff >= -0x02000000) {
*code_ptr = (BL - CONDITIONAL) | (*(code_ptr + 1) & COND_MASK);
jump->flags |= PATCH_B;
return 1;
}
}
else {
if (diff <= 0x01ffffff && diff >= -0x02000000) {
*code_ptr = (B - CONDITIONAL) | (*code_ptr & COND_MASK);
jump->flags |= PATCH_B;
}
}
#else
if (jump->flags & JUMP_ADDR)
diff = ((sljit_sw)jump->u.target - (sljit_sw)code_ptr);
else {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
diff = ((sljit_sw)(code + jump->u.label->size) - (sljit_sw)code_ptr);
}
/* Branch to Thumb code has not been optimized yet. */
if (diff & 0x3)
return 0;
diff >>= 2;
if (diff <= 0x01ffffff && diff >= -0x02000000) {
code_ptr -= 2;
*code_ptr = ((jump->flags & IS_BL) ? (BL - CONDITIONAL) : (B - CONDITIONAL)) | (code_ptr[2] & COND_MASK);
jump->flags |= PATCH_B;
return 1;
}
#endif
return 0;
}
static SLJIT_INLINE void inline_set_jump_addr(sljit_uw addr, sljit_uw new_addr, sljit_si flush)
{
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
sljit_uw *ptr = (sljit_uw*)addr;
sljit_uw *inst = (sljit_uw*)ptr[0];
sljit_uw mov_pc = ptr[1];
sljit_si bl = (mov_pc & 0x0000f000) != RD(TMP_PC);
sljit_sw diff = (sljit_sw)(((sljit_sw)new_addr - (sljit_sw)(inst + 2)) >> 2);
if (diff <= 0x7fffff && diff >= -0x800000) {
/* Turn to branch. */
if (!bl) {
inst[0] = (mov_pc & COND_MASK) | (B - CONDITIONAL) | (diff & 0xffffff);
if (flush) {
SLJIT_CACHE_FLUSH(inst, inst + 1);
}
} else {
inst[0] = (mov_pc & COND_MASK) | (BL - CONDITIONAL) | (diff & 0xffffff);
inst[1] = NOP;
if (flush) {
SLJIT_CACHE_FLUSH(inst, inst + 2);
}
}
} else {
/* Get the position of the constant. */
if (mov_pc & (1 << 23))
ptr = inst + ((mov_pc & 0xfff) >> 2) + 2;
else
ptr = inst + 1;
if (*inst != mov_pc) {
inst[0] = mov_pc;
if (!bl) {
if (flush) {
SLJIT_CACHE_FLUSH(inst, inst + 1);
}
} else {
inst[1] = BLX | RM(TMP_REG1);
if (flush) {
SLJIT_CACHE_FLUSH(inst, inst + 2);
}
}
}
*ptr = new_addr;
}
#else
sljit_uw *inst = (sljit_uw*)addr;
SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT);
inst[0] = MOVW | (inst[0] & 0xf000) | ((new_addr << 4) & 0xf0000) | (new_addr & 0xfff);
inst[1] = MOVT | (inst[1] & 0xf000) | ((new_addr >> 12) & 0xf0000) | ((new_addr >> 16) & 0xfff);
if (flush) {
SLJIT_CACHE_FLUSH(inst, inst + 2);
}
#endif
}
static sljit_uw get_imm(sljit_uw imm);
static SLJIT_INLINE void inline_set_const(sljit_uw addr, sljit_sw new_constant, sljit_si flush)
{
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
sljit_uw *ptr = (sljit_uw*)addr;
sljit_uw *inst = (sljit_uw*)ptr[0];
sljit_uw ldr_literal = ptr[1];
sljit_uw src2;
src2 = get_imm(new_constant);
if (src2) {
*inst = 0xe3a00000 | (ldr_literal & 0xf000) | src2;
if (flush) {
SLJIT_CACHE_FLUSH(inst, inst + 1);
}
return;
}
src2 = get_imm(~new_constant);
if (src2) {
*inst = 0xe3e00000 | (ldr_literal & 0xf000) | src2;
if (flush) {
SLJIT_CACHE_FLUSH(inst, inst + 1);
}
return;
}
if (ldr_literal & (1 << 23))
ptr = inst + ((ldr_literal & 0xfff) >> 2) + 2;
else
ptr = inst + 1;
if (*inst != ldr_literal) {
*inst = ldr_literal;
if (flush) {
SLJIT_CACHE_FLUSH(inst, inst + 1);
}
}
*ptr = new_constant;
#else
sljit_uw *inst = (sljit_uw*)addr;
SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT);
inst[0] = MOVW | (inst[0] & 0xf000) | ((new_constant << 4) & 0xf0000) | (new_constant & 0xfff);
inst[1] = MOVT | (inst[1] & 0xf000) | ((new_constant >> 12) & 0xf0000) | ((new_constant >> 16) & 0xfff);
if (flush) {
SLJIT_CACHE_FLUSH(inst, inst + 2);
}
#endif
}
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
struct sljit_memory_fragment *buf;
sljit_uw *code;
sljit_uw *code_ptr;
sljit_uw *buf_ptr;
sljit_uw *buf_end;
sljit_uw size;
sljit_uw word_count;
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
sljit_uw cpool_size;
sljit_uw cpool_skip_alignment;
sljit_uw cpool_current_index;
sljit_uw *cpool_start_address;
sljit_uw *last_pc_patch;
struct future_patch *first_patch;
#endif
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
CHECK_ERROR_PTR();
check_sljit_generate_code(compiler);
reverse_buf(compiler);
/* Second code generation pass. */
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
size = compiler->size + (compiler->patches << 1);
if (compiler->cpool_fill > 0)
size += compiler->cpool_fill + CONST_POOL_ALIGNMENT - 1;
#else
size = compiler->size;
#endif
code = (sljit_uw*)SLJIT_MALLOC_EXEC(size * sizeof(sljit_uw));
PTR_FAIL_WITH_EXEC_IF(code);
buf = compiler->buf;
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
cpool_size = 0;
cpool_skip_alignment = 0;
cpool_current_index = 0;
cpool_start_address = NULL;
first_patch = NULL;
last_pc_patch = code;
#endif
code_ptr = code;
word_count = 0;
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
if (label && label->size == 0) {
label->addr = (sljit_uw)code;
label->size = 0;
label = label->next;
}
do {
buf_ptr = (sljit_uw*)buf->memory;
buf_end = buf_ptr + (buf->used_size >> 2);
do {
word_count++;
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
if (cpool_size > 0) {
if (cpool_skip_alignment > 0) {
buf_ptr++;
cpool_skip_alignment--;
}
else {
if (SLJIT_UNLIKELY(resolve_const_pool_index(&first_patch, cpool_current_index, cpool_start_address, buf_ptr))) {
SLJIT_FREE_EXEC(code);
compiler->error = SLJIT_ERR_ALLOC_FAILED;
return NULL;
}
buf_ptr++;
if (++cpool_current_index >= cpool_size) {
SLJIT_ASSERT(!first_patch);
cpool_size = 0;
if (label && label->size == word_count) {
/* Points after the current instruction. */
label->addr = (sljit_uw)code_ptr;
label->size = code_ptr - code;
label = label->next;
}
}
}
}
else if ((*buf_ptr & 0xff000000) != PUSH_POOL) {
#endif
*code_ptr = *buf_ptr++;
/* These structures are ordered by their address. */
SLJIT_ASSERT(!label || label->size >= word_count);
SLJIT_ASSERT(!jump || jump->addr >= word_count);
SLJIT_ASSERT(!const_ || const_->addr >= word_count);
if (jump && jump->addr == word_count) {
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
if (detect_jump_type(jump, code_ptr, code))
code_ptr--;
jump->addr = (sljit_uw)code_ptr;
#else
jump->addr = (sljit_uw)(code_ptr - 2);
if (detect_jump_type(jump, code_ptr, code))
code_ptr -= 2;
#endif
jump = jump->next;
}
if (label && label->size == word_count) {
/* code_ptr can be affected above. */
label->addr = (sljit_uw)(code_ptr + 1);
label->size = (code_ptr + 1) - code;
label = label->next;
}
if (const_ && const_->addr == word_count) {
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
const_->addr = (sljit_uw)code_ptr;
#else
const_->addr = (sljit_uw)(code_ptr - 1);
#endif
const_ = const_->next;
}
code_ptr++;
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
}
else {
/* Fortunately, no need to shift. */
cpool_size = *buf_ptr++ & ~PUSH_POOL;
SLJIT_ASSERT(cpool_size > 0);
cpool_start_address = ALIGN_INSTRUCTION(code_ptr + 1);
cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, cpool_size);
if (cpool_current_index > 0) {
/* Unconditional branch. */
*code_ptr = B | (((cpool_start_address - code_ptr) + cpool_current_index - 2) & ~PUSH_POOL);
code_ptr = cpool_start_address + cpool_current_index;
}
cpool_skip_alignment = CONST_POOL_ALIGNMENT - 1;
cpool_current_index = 0;
last_pc_patch = code_ptr;
}
#endif
} while (buf_ptr < buf_end);
buf = buf->next;
} while (buf);
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
SLJIT_ASSERT(cpool_size == 0);
if (compiler->cpool_fill > 0) {
cpool_start_address = ALIGN_INSTRUCTION(code_ptr);
cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, compiler->cpool_fill);
if (cpool_current_index > 0)
code_ptr = cpool_start_address + cpool_current_index;
buf_ptr = compiler->cpool;
buf_end = buf_ptr + compiler->cpool_fill;
cpool_current_index = 0;
while (buf_ptr < buf_end) {
if (SLJIT_UNLIKELY(resolve_const_pool_index(&first_patch, cpool_current_index, cpool_start_address, buf_ptr))) {
SLJIT_FREE_EXEC(code);
compiler->error = SLJIT_ERR_ALLOC_FAILED;
return NULL;
}
buf_ptr++;
cpool_current_index++;
}
SLJIT_ASSERT(!first_patch);
}
#endif
jump = compiler->jumps;
while (jump) {
buf_ptr = (sljit_uw*)jump->addr;
if (jump->flags & PATCH_B) {
if (!(jump->flags & JUMP_ADDR)) {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
SLJIT_ASSERT(((sljit_sw)jump->u.label->addr - (sljit_sw)(buf_ptr + 2)) <= 0x01ffffff && ((sljit_sw)jump->u.label->addr - (sljit_sw)(buf_ptr + 2)) >= -0x02000000);
*buf_ptr |= (((sljit_sw)jump->u.label->addr - (sljit_sw)(buf_ptr + 2)) >> 2) & 0x00ffffff;
}
else {
SLJIT_ASSERT(((sljit_sw)jump->u.target - (sljit_sw)(buf_ptr + 2)) <= 0x01ffffff && ((sljit_sw)jump->u.target - (sljit_sw)(buf_ptr + 2)) >= -0x02000000);
*buf_ptr |= (((sljit_sw)jump->u.target - (sljit_sw)(buf_ptr + 2)) >> 2) & 0x00ffffff;
}
}
else if (jump->flags & SLJIT_REWRITABLE_JUMP) {
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
jump->addr = (sljit_uw)code_ptr;
code_ptr[0] = (sljit_uw)buf_ptr;
code_ptr[1] = *buf_ptr;
inline_set_jump_addr((sljit_uw)code_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
code_ptr += 2;
#else
inline_set_jump_addr((sljit_uw)buf_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
#endif
}
else {
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
if (jump->flags & IS_BL)
buf_ptr--;
if (*buf_ptr & (1 << 23))
buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2;
else
buf_ptr += 1;
*buf_ptr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
#else
inline_set_jump_addr((sljit_uw)buf_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
#endif
}
jump = jump->next;
}
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
const_ = compiler->consts;
while (const_) {
buf_ptr = (sljit_uw*)const_->addr;
const_->addr = (sljit_uw)code_ptr;
code_ptr[0] = (sljit_uw)buf_ptr;
code_ptr[1] = *buf_ptr;
if (*buf_ptr & (1 << 23))
buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2;
else
buf_ptr += 1;
/* Set the value again (can be a simple constant). */
inline_set_const((sljit_uw)code_ptr, *buf_ptr, 0);
code_ptr += 2;
const_ = const_->next;
}
#endif
SLJIT_ASSERT(code_ptr - code <= (sljit_si)size);
SLJIT_CACHE_FLUSH(code, code_ptr);
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_size = size * sizeof(sljit_uw);
return code;
}
/* --------------------------------------------------------------------- */
/* Entry, exit */
/* --------------------------------------------------------------------- */
/* emit_op inp_flags.
WRITE_BACK must be the first, since it is a flag. */
#define WRITE_BACK 0x01
#define ALLOW_IMM 0x02
#define ALLOW_INV_IMM 0x04
#define ALLOW_ANY_IMM (ALLOW_IMM | ALLOW_INV_IMM)
#define ARG_TEST 0x08
/* Creates an index in data_transfer_insts array. */
#define WORD_DATA 0x00
#define BYTE_DATA 0x10
#define HALF_DATA 0x20
#define SIGNED_DATA 0x40
#define LOAD_DATA 0x80
#define EMIT_INSTRUCTION(inst) \
FAIL_IF(push_inst(compiler, (inst)))
/* Condition: AL. */
#define EMIT_DATA_PROCESS_INS(opcode, set_flags, dst, src1, src2) \
(0xe0000000 | ((opcode) << 21) | (set_flags) | RD(dst) | RN(src1) | (src2))
static sljit_si emit_op(struct sljit_compiler *compiler, sljit_si op, sljit_si inp_flags,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w);
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size)
{
sljit_si size;
sljit_uw push;
CHECK_ERROR();
check_sljit_emit_enter(compiler, args, scratches, saveds, local_size);
compiler->scratches = scratches;
compiler->saveds = saveds;
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
compiler->logical_local_size = local_size;
#endif
/* Push saved registers, temporary registers
stmdb sp!, {..., lr} */
push = PUSH | (1 << 14);
if (scratches >= 5)
push |= 1 << 11;
if (scratches >= 4)
push |= 1 << 10;
if (saveds >= 5)
push |= 1 << 8;
if (saveds >= 4)
push |= 1 << 7;
if (saveds >= 3)
push |= 1 << 6;
if (saveds >= 2)
push |= 1 << 5;
if (saveds >= 1)
push |= 1 << 4;
EMIT_INSTRUCTION(push);
/* Stack must be aligned to 8 bytes: */
size = (1 + saveds) * sizeof(sljit_uw);
if (scratches >= 4)
size += (scratches - 3) * sizeof(sljit_uw);
local_size += size;
local_size = (local_size + 7) & ~7;
local_size -= size;
compiler->local_size = local_size;
if (local_size > 0)
FAIL_IF(emit_op(compiler, SLJIT_SUB, ALLOW_IMM, SLJIT_LOCALS_REG, 0, SLJIT_LOCALS_REG, 0, SLJIT_IMM, local_size));
if (args >= 1)
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_SAVED_REG1, SLJIT_UNUSED, RM(SLJIT_SCRATCH_REG1)));
if (args >= 2)
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_SAVED_REG2, SLJIT_UNUSED, RM(SLJIT_SCRATCH_REG2)));
if (args >= 3)
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_SAVED_REG3, SLJIT_UNUSED, RM(SLJIT_SCRATCH_REG3)));
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size)
{
sljit_si size;
CHECK_ERROR_VOID();
check_sljit_set_context(compiler, args, scratches, saveds, local_size);
compiler->scratches = scratches;
compiler->saveds = saveds;
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
compiler->logical_local_size = local_size;
#endif
size = (1 + saveds) * sizeof(sljit_uw);
if (scratches >= 4)
size += (scratches - 3) * sizeof(sljit_uw);
local_size += size;
local_size = (local_size + 7) & ~7;
local_size -= size;
compiler->local_size = local_size;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
{
sljit_uw pop;
CHECK_ERROR();
check_sljit_emit_return(compiler, op, src, srcw);
FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
if (compiler->local_size > 0)
FAIL_IF(emit_op(compiler, SLJIT_ADD, ALLOW_IMM, SLJIT_LOCALS_REG, 0, SLJIT_LOCALS_REG, 0, SLJIT_IMM, compiler->local_size));
pop = POP | (1 << 15);
/* Push saved registers, temporary registers
ldmia sp!, {..., pc} */
if (compiler->scratches >= 5)
pop |= 1 << 11;
if (compiler->scratches >= 4)
pop |= 1 << 10;
if (compiler->saveds >= 5)
pop |= 1 << 8;
if (compiler->saveds >= 4)
pop |= 1 << 7;
if (compiler->saveds >= 3)
pop |= 1 << 6;
if (compiler->saveds >= 2)
pop |= 1 << 5;
if (compiler->saveds >= 1)
pop |= 1 << 4;
return push_inst(compiler, pop);
}
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
/* s/l - store/load (1 bit)
u/s - signed/unsigned (1 bit)
w/b/h/N - word/byte/half/NOT allowed (2 bit)
It contans 16 items, but not all are different. */
static sljit_sw data_transfer_insts[16] = {
/* s u w */ 0xe5000000 /* str */,
/* s u b */ 0xe5400000 /* strb */,
/* s u h */ 0xe10000b0 /* strh */,
/* s u N */ 0x00000000 /* not allowed */,
/* s s w */ 0xe5000000 /* str */,
/* s s b */ 0xe5400000 /* strb */,
/* s s h */ 0xe10000b0 /* strh */,
/* s s N */ 0x00000000 /* not allowed */,
/* l u w */ 0xe5100000 /* ldr */,
/* l u b */ 0xe5500000 /* ldrb */,
/* l u h */ 0xe11000b0 /* ldrh */,
/* l u N */ 0x00000000 /* not allowed */,
/* l s w */ 0xe5100000 /* ldr */,
/* l s b */ 0xe11000d0 /* ldrsb */,
/* l s h */ 0xe11000f0 /* ldrsh */,
/* l s N */ 0x00000000 /* not allowed */,
};
#define EMIT_DATA_TRANSFER(type, add, wb, target, base1, base2) \
(data_transfer_insts[(type) >> 4] | ((add) << 23) | ((wb) << 21) | (reg_map[target] << 12) | (reg_map[base1] << 16) | (base2))
/* Normal ldr/str instruction.
Type2: ldrsb, ldrh, ldrsh */
#define IS_TYPE1_TRANSFER(type) \
(data_transfer_insts[(type) >> 4] & 0x04000000)
#define TYPE2_TRANSFER_IMM(imm) \
(((imm) & 0xf) | (((imm) & 0xf0) << 4) | (1 << 22))
/* flags: */
/* Arguments are swapped. */
#define ARGS_SWAPPED 0x01
/* Inverted immediate. */
#define INV_IMM 0x02
/* Source and destination is register. */
#define REG_DEST 0x04
#define REG_SOURCE 0x08
/* One instruction is enough. */
#define FAST_DEST 0x10
/* Multiple instructions are required. */
#define SLOW_DEST 0x20
/* SET_FLAGS must be (1 << 20) as it is also the value of S bit (can be used for optimization). */
#define SET_FLAGS (1 << 20)
/* dst: reg
src1: reg
src2: reg or imm (if allowed)
SRC2_IMM must be (1 << 25) as it is also the value of I bit (can be used for optimization). */
#define SRC2_IMM (1 << 25)
#define EMIT_DATA_PROCESS_INS_AND_RETURN(opcode) \
return push_inst(compiler, EMIT_DATA_PROCESS_INS(opcode, flags & SET_FLAGS, dst, src1, (src2 & SRC2_IMM) ? src2 : RM(src2)))
#define EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(opcode, dst, src1, src2) \
return push_inst(compiler, EMIT_DATA_PROCESS_INS(opcode, flags & SET_FLAGS, dst, src1, src2))
#define EMIT_SHIFT_INS_AND_RETURN(opcode) \
SLJIT_ASSERT(!(flags & INV_IMM) && !(src2 & SRC2_IMM)); \
if (compiler->shift_imm != 0x20) { \
SLJIT_ASSERT(src1 == TMP_REG1); \
SLJIT_ASSERT(!(flags & ARGS_SWAPPED)); \
if (compiler->shift_imm != 0) \
return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, flags & SET_FLAGS, dst, SLJIT_UNUSED, (compiler->shift_imm << 7) | (opcode << 5) | reg_map[src2])); \
return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, flags & SET_FLAGS, dst, SLJIT_UNUSED, reg_map[src2])); \
} \
return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, flags & SET_FLAGS, dst, SLJIT_UNUSED, (reg_map[(flags & ARGS_SWAPPED) ? src1 : src2] << 8) | (opcode << 5) | 0x10 | ((flags & ARGS_SWAPPED) ? reg_map[src2] : reg_map[src1])));
static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags,
sljit_si dst, sljit_si src1, sljit_si src2)
{
sljit_sw mul_inst;
switch (GET_OPCODE(op)) {
case SLJIT_MOV:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
if (dst != src2) {
if (src2 & SRC2_IMM) {
if (flags & INV_IMM)
EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
}
EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, reg_map[src2]);
}
return SLJIT_SUCCESS;
case SLJIT_MOV_UB:
case SLJIT_MOV_SB:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
if ((flags & (REG_DEST | REG_SOURCE)) == (REG_DEST | REG_SOURCE)) {
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
if (op == SLJIT_MOV_UB)
return push_inst(compiler, EMIT_DATA_PROCESS_INS(AND_DP, 0, dst, src2, SRC2_IMM | 0xff));
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (24 << 7) | reg_map[src2]));
return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (24 << 7) | (op == SLJIT_MOV_UB ? 0x20 : 0x40) | reg_map[dst]));
#else
return push_inst(compiler, (op == SLJIT_MOV_UB ? UXTB : SXTB) | RD(dst) | RM(src2));
#endif
}
else if (dst != src2) {
SLJIT_ASSERT(src2 & SRC2_IMM);
if (flags & INV_IMM)
EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
}
return SLJIT_SUCCESS;
case SLJIT_MOV_UH:
case SLJIT_MOV_SH:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
if ((flags & (REG_DEST | REG_SOURCE)) == (REG_DEST | REG_SOURCE)) {
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (16 << 7) | reg_map[src2]));
return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (16 << 7) | (op == SLJIT_MOV_UH ? 0x20 : 0x40) | reg_map[dst]));
#else
return push_inst(compiler, (op == SLJIT_MOV_UH ? UXTH : SXTH) | RD(dst) | RM(src2));
#endif
}
else if (dst != src2) {
SLJIT_ASSERT(src2 & SRC2_IMM);
if (flags & INV_IMM)
EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
}
return SLJIT_SUCCESS;
case SLJIT_NOT:
if (src2 & SRC2_IMM) {
if (flags & INV_IMM)
EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
}
EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, RM(src2));
case SLJIT_CLZ:
SLJIT_ASSERT(!(flags & INV_IMM));
SLJIT_ASSERT(!(src2 & SRC2_IMM));
FAIL_IF(push_inst(compiler, CLZ | RD(dst) | RM(src2)));
if (flags & SET_FLAGS)
EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(CMP_DP, SLJIT_UNUSED, dst, SRC2_IMM);
return SLJIT_SUCCESS;
case SLJIT_ADD:
SLJIT_ASSERT(!(flags & INV_IMM));
EMIT_DATA_PROCESS_INS_AND_RETURN(ADD_DP);
case SLJIT_ADDC:
SLJIT_ASSERT(!(flags & INV_IMM));
EMIT_DATA_PROCESS_INS_AND_RETURN(ADC_DP);
case SLJIT_SUB:
SLJIT_ASSERT(!(flags & INV_IMM));
if (!(flags & ARGS_SWAPPED))
EMIT_DATA_PROCESS_INS_AND_RETURN(SUB_DP);
EMIT_DATA_PROCESS_INS_AND_RETURN(RSB_DP);
case SLJIT_SUBC:
SLJIT_ASSERT(!(flags & INV_IMM));
if (!(flags & ARGS_SWAPPED))
EMIT_DATA_PROCESS_INS_AND_RETURN(SBC_DP);
EMIT_DATA_PROCESS_INS_AND_RETURN(RSC_DP);
case SLJIT_MUL:
SLJIT_ASSERT(!(flags & INV_IMM));
SLJIT_ASSERT(!(src2 & SRC2_IMM));
if (SLJIT_UNLIKELY(op & SLJIT_SET_O))
mul_inst = SMULL | (reg_map[TMP_REG3] << 16) | (reg_map[dst] << 12);
else
mul_inst = MUL | (reg_map[dst] << 16);
if (dst != src2)
FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src1] << 8) | reg_map[src2]));
else if (dst != src1)
FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src2] << 8) | reg_map[src1]));
else {
/* Rm and Rd must not be the same register. */
SLJIT_ASSERT(dst != TMP_REG1);
FAIL_IF(push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, reg_map[src2])));
FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src2] << 8) | reg_map[TMP_REG1]));
}
if (!(op & SLJIT_SET_O))
return SLJIT_SUCCESS;
/* We need to use TMP_REG3. */
compiler->cache_arg = 0;
compiler->cache_argw = 0;
/* cmp TMP_REG2, dst asr #31. */
return push_inst(compiler, EMIT_DATA_PROCESS_INS(CMP_DP, SET_FLAGS, SLJIT_UNUSED, TMP_REG3, RM(dst) | 0xfc0));
case SLJIT_AND:
if (!(flags & INV_IMM))
EMIT_DATA_PROCESS_INS_AND_RETURN(AND_DP);
EMIT_DATA_PROCESS_INS_AND_RETURN(BIC_DP);
case SLJIT_OR:
SLJIT_ASSERT(!(flags & INV_IMM));
EMIT_DATA_PROCESS_INS_AND_RETURN(ORR_DP);
case SLJIT_XOR:
SLJIT_ASSERT(!(flags & INV_IMM));
EMIT_DATA_PROCESS_INS_AND_RETURN(EOR_DP);
case SLJIT_SHL:
EMIT_SHIFT_INS_AND_RETURN(0);
case SLJIT_LSHR:
EMIT_SHIFT_INS_AND_RETURN(1);
case SLJIT_ASHR:
EMIT_SHIFT_INS_AND_RETURN(2);
}
SLJIT_ASSERT_STOP();
return SLJIT_SUCCESS;
}
#undef EMIT_DATA_PROCESS_INS_AND_RETURN
#undef EMIT_FULL_DATA_PROCESS_INS_AND_RETURN
#undef EMIT_SHIFT_INS_AND_RETURN
/* Tests whether the immediate can be stored in the 12 bit imm field.
Returns with 0 if not possible. */
static sljit_uw get_imm(sljit_uw imm)
{
sljit_si rol;
if (imm <= 0xff)
return SRC2_IMM | imm;
if (!(imm & 0xff000000)) {
imm <<= 8;
rol = 8;
}
else {
imm = (imm << 24) | (imm >> 8);
rol = 0;
}
if (!(imm & 0xff000000)) {
imm <<= 8;
rol += 4;
}
if (!(imm & 0xf0000000)) {
imm <<= 4;
rol += 2;
}
if (!(imm & 0xc0000000)) {
imm <<= 2;
rol += 1;
}
if (!(imm & 0x00ffffff))
return SRC2_IMM | (imm >> 24) | (rol << 8);
else
return 0;
}
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
static sljit_si generate_int(struct sljit_compiler *compiler, sljit_si reg, sljit_uw imm, sljit_si positive)
{
sljit_uw mask;
sljit_uw imm1;
sljit_uw imm2;
sljit_si rol;
/* Step1: Search a zero byte (8 continous zero bit). */
mask = 0xff000000;
rol = 8;
while(1) {
if (!(imm & mask)) {
/* Rol imm by rol. */
imm = (imm << rol) | (imm >> (32 - rol));
/* Calculate arm rol. */
rol = 4 + (rol >> 1);
break;
}
rol += 2;
mask >>= 2;
if (mask & 0x3) {
/* rol by 8. */
imm = (imm << 8) | (imm >> 24);
mask = 0xff00;
rol = 24;
while (1) {
if (!(imm & mask)) {
/* Rol imm by rol. */
imm = (imm << rol) | (imm >> (32 - rol));
/* Calculate arm rol. */
rol = (rol >> 1) - 8;
break;
}
rol += 2;
mask >>= 2;
if (mask & 0x3)
return 0;
}
break;
}
}
/* The low 8 bit must be zero. */
SLJIT_ASSERT(!(imm & 0xff));
if (!(imm & 0xff000000)) {
imm1 = SRC2_IMM | ((imm >> 16) & 0xff) | (((rol + 4) & 0xf) << 8);
imm2 = SRC2_IMM | ((imm >> 8) & 0xff) | (((rol + 8) & 0xf) << 8);
}
else if (imm & 0xc0000000) {
imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8);
imm <<= 8;
rol += 4;
if (!(imm & 0xff000000)) {
imm <<= 8;
rol += 4;
}
if (!(imm & 0xf0000000)) {
imm <<= 4;
rol += 2;
}
if (!(imm & 0xc0000000)) {
imm <<= 2;
rol += 1;
}
if (!(imm & 0x00ffffff))
imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8);
else
return 0;
}
else {
if (!(imm & 0xf0000000)) {
imm <<= 4;
rol += 2;
}
if (!(imm & 0xc0000000)) {
imm <<= 2;
rol += 1;
}
imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8);
imm <<= 8;
rol += 4;
if (!(imm & 0xf0000000)) {
imm <<= 4;
rol += 2;
}
if (!(imm & 0xc0000000)) {
imm <<= 2;
rol += 1;
}
if (!(imm & 0x00ffffff))
imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8);
else
return 0;
}
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(positive ? MOV_DP : MVN_DP, 0, reg, SLJIT_UNUSED, imm1));
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(positive ? ORR_DP : BIC_DP, 0, reg, reg, imm2));
return 1;
}
#endif
static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si reg, sljit_uw imm)
{
sljit_uw tmp;
#if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
if (!(imm & ~0xffff))
return push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff));
#endif
/* Create imm by 1 inst. */
tmp = get_imm(imm);
if (tmp) {
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, tmp));
return SLJIT_SUCCESS;
}
tmp = get_imm(~imm);
if (tmp) {
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MVN_DP, 0, reg, SLJIT_UNUSED, tmp));
return SLJIT_SUCCESS;
}
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
/* Create imm by 2 inst. */
FAIL_IF(generate_int(compiler, reg, imm, 1));
FAIL_IF(generate_int(compiler, reg, ~imm, 0));
/* Load integer. */
return push_inst_with_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, reg, TMP_PC, 0), imm);
#else
return emit_imm(compiler, reg, imm);
#endif
}
/* Helper function. Dst should be reg + value, using at most 1 instruction, flags does not set. */
static sljit_si emit_set_delta(struct sljit_compiler *compiler, sljit_si dst, sljit_si reg, sljit_sw value)
{
if (value >= 0) {
value = get_imm(value);
if (value)
return push_inst(compiler, EMIT_DATA_PROCESS_INS(ADD_DP, 0, dst, reg, value));
}
else {
value = get_imm(-value);
if (value)
return push_inst(compiler, EMIT_DATA_PROCESS_INS(SUB_DP, 0, dst, reg, value));
}
return SLJIT_ERR_UNSUPPORTED;
}
/* Can perform an operation using at most 1 instruction. */
static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si inp_flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
sljit_uw imm;
if (arg & SLJIT_IMM) {
imm = get_imm(argw);
if (imm) {
if (inp_flags & ARG_TEST)
return 1;
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, imm));
return -1;
}
imm = get_imm(~argw);
if (imm) {
if (inp_flags & ARG_TEST)
return 1;
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MVN_DP, 0, reg, SLJIT_UNUSED, imm));
return -1;
}
return (inp_flags & ARG_TEST) ? SLJIT_SUCCESS : 0;
}
SLJIT_ASSERT(arg & SLJIT_MEM);
/* Fast loads/stores. */
if (arg & 0xf) {
if (!(arg & 0xf0)) {
if (IS_TYPE1_TRANSFER(inp_flags)) {
if (argw >= 0 && argw <= 0xfff) {
if (inp_flags & ARG_TEST)
return 1;
EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, argw));
return -1;
}
if (argw < 0 && argw >= -0xfff) {
if (inp_flags & ARG_TEST)
return 1;
EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 0, inp_flags & WRITE_BACK, reg, arg & 0xf, -argw));
return -1;
}
}
else {
if (argw >= 0 && argw <= 0xff) {
if (inp_flags & ARG_TEST)
return 1;
EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, TYPE2_TRANSFER_IMM(argw)));
return -1;
}
if (argw < 0 && argw >= -0xff) {
if (inp_flags & ARG_TEST)
return 1;
argw = -argw;
EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 0, inp_flags & WRITE_BACK, reg, arg & 0xf, TYPE2_TRANSFER_IMM(argw)));
return -1;
}
}
}
else if ((argw & 0x3) == 0 || IS_TYPE1_TRANSFER(inp_flags)) {
if (inp_flags & ARG_TEST)
return 1;
EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf,
RM((arg >> 4) & 0xf) | (IS_TYPE1_TRANSFER(inp_flags) ? SRC2_IMM : 0) | ((argw & 0x3) << 7)));
return -1;
}
}
return (inp_flags & ARG_TEST) ? SLJIT_SUCCESS : 0;
}
/* See getput_arg below.
Note: can_cache is called only for binary operators. Those
operators always uses word arguments without write back. */
static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
/* Immediate caching is not supported as it would be an operation on constant arguments. */
if (arg & SLJIT_IMM)
return 0;
/* Always a simple operation. */
if (arg & 0xf0)
return 0;
if (!(arg & 0xf)) {
/* Immediate access. */
if ((next_arg & SLJIT_MEM) && ((sljit_uw)argw - (sljit_uw)next_argw <= 0xfff || (sljit_uw)next_argw - (sljit_uw)argw <= 0xfff))
return 1;
return 0;
}
if (argw <= 0xfffff && argw >= -0xfffff)
return 0;
if (argw == next_argw && (next_arg & SLJIT_MEM))
return 1;
if (arg == next_arg && ((sljit_uw)argw - (sljit_uw)next_argw <= 0xfff || (sljit_uw)next_argw - (sljit_uw)argw <= 0xfff))
return 1;
return 0;
}
#define GETPUT_ARG_DATA_TRANSFER(add, wb, target, base, imm) \
if (max_delta & 0xf00) \
FAIL_IF(push_inst(compiler, EMIT_DATA_TRANSFER(inp_flags, add, wb, target, base, imm))); \
else \
FAIL_IF(push_inst(compiler, EMIT_DATA_TRANSFER(inp_flags, add, wb, target, base, TYPE2_TRANSFER_IMM(imm))));
#define TEST_WRITE_BACK() \
if (inp_flags & WRITE_BACK) { \
tmp_r = arg & 0xf; \
if (reg == tmp_r) { \
/* This can only happen for stores */ \
/* since ldr reg, [reg, ...]! has no meaning */ \
SLJIT_ASSERT(!(inp_flags & LOAD_DATA)); \
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(reg))); \
reg = TMP_REG3; \
} \
}
/* Emit the necessary instructions. See can_cache above. */
static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si inp_flags, sljit_si reg, sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
sljit_si tmp_r;
sljit_sw max_delta;
sljit_sw sign;
sljit_uw imm;
if (arg & SLJIT_IMM) {
SLJIT_ASSERT(inp_flags & LOAD_DATA);
return load_immediate(compiler, reg, argw);
}
SLJIT_ASSERT(arg & SLJIT_MEM);
tmp_r = (inp_flags & LOAD_DATA) ? reg : TMP_REG3;
max_delta = IS_TYPE1_TRANSFER(inp_flags) ? 0xfff : 0xff;
if ((arg & 0xf) == SLJIT_UNUSED) {
/* Write back is not used. */
imm = (sljit_uw)(argw - compiler->cache_argw);
if ((compiler->cache_arg & SLJIT_IMM) && (imm <= (sljit_uw)max_delta || imm >= (sljit_uw)-max_delta)) {
if (imm <= (sljit_uw)max_delta) {
sign = 1;
argw = argw - compiler->cache_argw;
}
else {
sign = 0;
argw = compiler->cache_argw - argw;
}
GETPUT_ARG_DATA_TRANSFER(sign, 0, reg, TMP_REG3, argw);
return SLJIT_SUCCESS;
}
/* With write back, we can create some sophisticated loads, but
it is hard to decide whether we should convert downward (0s) or upward (1s). */
imm = (sljit_uw)(argw - next_argw);
if ((next_arg & SLJIT_MEM) && (imm <= (sljit_uw)max_delta || imm >= (sljit_uw)-max_delta)) {
SLJIT_ASSERT(inp_flags & LOAD_DATA);
compiler->cache_arg = SLJIT_IMM;
compiler->cache_argw = argw;
tmp_r = TMP_REG3;
}
FAIL_IF(load_immediate(compiler, tmp_r, argw));
GETPUT_ARG_DATA_TRANSFER(1, 0, reg, tmp_r, 0);
return SLJIT_SUCCESS;
}
if (arg & 0xf0) {
SLJIT_ASSERT((argw & 0x3) && !(max_delta & 0xf00));
if (inp_flags & WRITE_BACK)
tmp_r = arg & 0xf;
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, tmp_r, arg & 0xf, RM((arg >> 4) & 0xf) | ((argw & 0x3) << 7)));
EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, 0, reg, tmp_r, TYPE2_TRANSFER_IMM(0)));
return SLJIT_SUCCESS;
}
imm = (sljit_uw)(argw - compiler->cache_argw);
if (compiler->cache_arg == arg && imm <= (sljit_uw)max_delta) {
SLJIT_ASSERT(!(inp_flags & WRITE_BACK));
GETPUT_ARG_DATA_TRANSFER(1, 0, reg, TMP_REG3, imm);
return SLJIT_SUCCESS;
}
if (compiler->cache_arg == arg && imm >= (sljit_uw)-max_delta) {
SLJIT_ASSERT(!(inp_flags & WRITE_BACK));
imm = (sljit_uw)-(sljit_sw)imm;
GETPUT_ARG_DATA_TRANSFER(0, 0, reg, TMP_REG3, imm);
return SLJIT_SUCCESS;
}
imm = get_imm(argw & ~max_delta);
if (imm) {
TEST_WRITE_BACK();
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, tmp_r, arg & 0xf, imm));
GETPUT_ARG_DATA_TRANSFER(1, inp_flags & WRITE_BACK, reg, tmp_r, argw & max_delta);
return SLJIT_SUCCESS;
}
imm = get_imm(-argw & ~max_delta);
if (imm) {
argw = -argw;
TEST_WRITE_BACK();
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP, 0, tmp_r, arg & 0xf, imm));
GETPUT_ARG_DATA_TRANSFER(0, inp_flags & WRITE_BACK, reg, tmp_r, argw & max_delta);
return SLJIT_SUCCESS;
}
if ((compiler->cache_arg & SLJIT_IMM) && compiler->cache_argw == argw) {
TEST_WRITE_BACK();
EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, RM(TMP_REG3) | (max_delta & 0xf00 ? SRC2_IMM : 0)));
return SLJIT_SUCCESS;
}
if (argw == next_argw && (next_arg & SLJIT_MEM)) {
SLJIT_ASSERT(inp_flags & LOAD_DATA);
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
compiler->cache_arg = SLJIT_IMM;
compiler->cache_argw = argw;
TEST_WRITE_BACK();
EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, RM(TMP_REG3) | (max_delta & 0xf00 ? SRC2_IMM : 0)));
return SLJIT_SUCCESS;
}
imm = (sljit_uw)(argw - next_argw);
if (arg == next_arg && !(inp_flags & WRITE_BACK) && (imm <= (sljit_uw)max_delta || imm >= (sljit_uw)-max_delta)) {
SLJIT_ASSERT(inp_flags & LOAD_DATA);
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG3, TMP_REG3, reg_map[arg & 0xf]));
compiler->cache_arg = arg;
compiler->cache_argw = argw;
GETPUT_ARG_DATA_TRANSFER(1, 0, reg, TMP_REG3, 0);
return SLJIT_SUCCESS;
}
if ((arg & 0xf) == tmp_r) {
compiler->cache_arg = SLJIT_IMM;
compiler->cache_argw = argw;
tmp_r = TMP_REG3;
}
FAIL_IF(load_immediate(compiler, tmp_r, argw));
EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, reg_map[tmp_r] | (max_delta & 0xf00 ? SRC2_IMM : 0)));
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
if (getput_arg_fast(compiler, flags, reg, arg, argw))
return compiler->error;
compiler->cache_arg = 0;
compiler->cache_argw = 0;
return getput_arg(compiler, flags, reg, arg, argw, 0, 0);
}
static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
{
if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
return compiler->error;
return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}
static sljit_si emit_op(struct sljit_compiler *compiler, sljit_si op, sljit_si inp_flags,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
/* arg1 goes to TMP_REG1 or src reg
arg2 goes to TMP_REG2, imm or src reg
TMP_REG3 can be used for caching
result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
/* We prefers register and simple consts. */
sljit_si dst_r;
sljit_si src1_r;
sljit_si src2_r = 0;
sljit_si sugg_src2_r = TMP_REG2;
sljit_si flags = GET_FLAGS(op) ? SET_FLAGS : 0;
compiler->cache_arg = 0;
compiler->cache_argw = 0;
/* Destination check. */
if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
return SLJIT_SUCCESS;
dst_r = TMP_REG2;
}
else if (dst <= TMP_REG3) {
dst_r = dst;
flags |= REG_DEST;
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
sugg_src2_r = dst_r;
}
else {
SLJIT_ASSERT(dst & SLJIT_MEM);
if (getput_arg_fast(compiler, inp_flags | ARG_TEST, TMP_REG2, dst, dstw)) {
flags |= FAST_DEST;
dst_r = TMP_REG2;
}
else {
flags |= SLOW_DEST;
dst_r = 0;
}
}
/* Source 1. */
if (src1 <= TMP_REG3)
src1_r = src1;
else if (src2 <= TMP_REG3) {
flags |= ARGS_SWAPPED;
src1_r = src2;
src2 = src1;
src2w = src1w;
}
else do { /* do { } while(0) is used because of breaks. */
src1_r = 0;
if ((inp_flags & ALLOW_ANY_IMM) && (src1 & SLJIT_IMM)) {
/* The second check will generate a hit. */
src2_r = get_imm(src1w);
if (src2_r) {
flags |= ARGS_SWAPPED;
src1 = src2;
src1w = src2w;
break;
}
if (inp_flags & ALLOW_INV_IMM) {
src2_r = get_imm(~src1w);
if (src2_r) {
flags |= ARGS_SWAPPED | INV_IMM;
src1 = src2;
src1w = src2w;
break;
}
}
if (GET_OPCODE(op) == SLJIT_ADD) {
src2_r = get_imm(-src1w);
if (src2_r) {
/* Note: ARGS_SWAPPED is intentionally not applied! */
src1 = src2;
src1w = src2w;
op = SLJIT_SUB | GET_ALL_FLAGS(op);
break;
}
}
}
if (getput_arg_fast(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w)) {
FAIL_IF(compiler->error);
src1_r = TMP_REG1;
}
} while (0);
/* Source 2. */
if (src2_r == 0) {
if (src2 <= TMP_REG3) {
src2_r = src2;
flags |= REG_SOURCE;
if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
dst_r = src2_r;
}
else do { /* do { } while(0) is used because of breaks. */
if ((inp_flags & ALLOW_ANY_IMM) && (src2 & SLJIT_IMM)) {
src2_r = get_imm(src2w);
if (src2_r)
break;
if (inp_flags & ALLOW_INV_IMM) {
src2_r = get_imm(~src2w);
if (src2_r) {
flags |= INV_IMM;
break;
}
}
if (GET_OPCODE(op) == SLJIT_ADD) {
src2_r = get_imm(-src2w);
if (src2_r) {
op = SLJIT_SUB | GET_ALL_FLAGS(op);
flags &= ~ARGS_SWAPPED;
break;
}
}
if (GET_OPCODE(op) == SLJIT_SUB && !(flags & ARGS_SWAPPED)) {
src2_r = get_imm(-src2w);
if (src2_r) {
op = SLJIT_ADD | GET_ALL_FLAGS(op);
flags &= ~ARGS_SWAPPED;
break;
}
}
}
/* src2_r is 0. */
if (getput_arg_fast(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w)) {
FAIL_IF(compiler->error);
src2_r = sugg_src2_r;
}
} while (0);
}
/* src1_r, src2_r and dst_r can be zero (=unprocessed) or non-zero.
If they are zero, they must not be registers. */
if (src1_r == 0 && src2_r == 0 && dst_r == 0) {
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
SLJIT_ASSERT(!(flags & ARGS_SWAPPED));
flags |= ARGS_SWAPPED;
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG2, src1, src1w, dst, dstw));
}
else {
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG2, src2, src2w, dst, dstw));
}
src1_r = TMP_REG1;
src2_r = TMP_REG2;
}
else if (src1_r == 0 && src2_r == 0) {
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
src1_r = TMP_REG1;
}
else if (src1_r == 0 && dst_r == 0) {
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
src1_r = TMP_REG1;
}
else if (src2_r == 0 && dst_r == 0) {
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w, dst, dstw));
src2_r = sugg_src2_r;
}
if (dst_r == 0)
dst_r = TMP_REG2;
if (src1_r == 0) {
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, 0, 0));
src1_r = TMP_REG1;
}
if (src2_r == 0) {
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w, 0, 0));
src2_r = sugg_src2_r;
}
FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
if (flags & (FAST_DEST | SLOW_DEST)) {
if (flags & FAST_DEST)
FAIL_IF(getput_arg_fast(compiler, inp_flags, dst_r, dst, dstw));
else
FAIL_IF(getput_arg(compiler, inp_flags, dst_r, dst, dstw, 0, 0));
}
return SLJIT_SUCCESS;
}
#ifdef __cplusplus
extern "C" {
#endif
#if defined(__GNUC__)
extern unsigned int __aeabi_uidivmod(unsigned int numerator, unsigned int denominator);
extern int __aeabi_idivmod(int numerator, int denominator);
#else
#error "Software divmod functions are needed"
#endif
#ifdef __cplusplus
}
#endif
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op)
{
CHECK_ERROR();
check_sljit_emit_op0(compiler, op);
op = GET_OPCODE(op);
switch (op) {
case SLJIT_BREAKPOINT:
EMIT_INSTRUCTION(BKPT);
break;
case SLJIT_NOP:
EMIT_INSTRUCTION(NOP);
break;
case SLJIT_UMUL:
case SLJIT_SMUL:
#if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
return push_inst(compiler, (op == SLJIT_UMUL ? UMULL : SMULL)
| (reg_map[SLJIT_SCRATCH_REG2] << 16)
| (reg_map[SLJIT_SCRATCH_REG1] << 12)
| (reg_map[SLJIT_SCRATCH_REG1] << 8)
| reg_map[SLJIT_SCRATCH_REG2]);
#else
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, RM(SLJIT_SCRATCH_REG2)));
return push_inst(compiler, (op == SLJIT_UMUL ? UMULL : SMULL)
| (reg_map[SLJIT_SCRATCH_REG2] << 16)
| (reg_map[SLJIT_SCRATCH_REG1] << 12)
| (reg_map[SLJIT_SCRATCH_REG1] << 8)
| reg_map[TMP_REG1]);
#endif
case SLJIT_UDIV:
case SLJIT_SDIV:
if (compiler->scratches >= 3)
EMIT_INSTRUCTION(0xe52d2008 /* str r2, [sp, #-8]! */);
#if defined(__GNUC__)
FAIL_IF(sljit_emit_ijump(compiler, SLJIT_FAST_CALL, SLJIT_IMM,
(op == SLJIT_UDIV ? SLJIT_FUNC_OFFSET(__aeabi_uidivmod) : SLJIT_FUNC_OFFSET(__aeabi_idivmod))));
#else
#error "Software divmod functions are needed"
#endif
if (compiler->scratches >= 3)
return push_inst(compiler, 0xe49d2008 /* ldr r2, [sp], #8 */);
return SLJIT_SUCCESS;
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
CHECK_ERROR();
check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
switch (GET_OPCODE(op)) {
case SLJIT_MOV:
case SLJIT_MOV_UI:
case SLJIT_MOV_SI:
case SLJIT_MOV_P:
return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOV_UB:
return emit_op(compiler, SLJIT_MOV_UB, ALLOW_ANY_IMM | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub)srcw : srcw);
case SLJIT_MOV_SB:
return emit_op(compiler, SLJIT_MOV_SB, ALLOW_ANY_IMM | SIGNED_DATA | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb)srcw : srcw);
case SLJIT_MOV_UH:
return emit_op(compiler, SLJIT_MOV_UH, ALLOW_ANY_IMM | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh)srcw : srcw);
case SLJIT_MOV_SH:
return emit_op(compiler, SLJIT_MOV_SH, ALLOW_ANY_IMM | SIGNED_DATA | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh)srcw : srcw);
case SLJIT_MOVU:
case SLJIT_MOVU_UI:
case SLJIT_MOVU_SI:
case SLJIT_MOVU_P:
return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOVU_UB:
return emit_op(compiler, SLJIT_MOV_UB, ALLOW_ANY_IMM | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub)srcw : srcw);
case SLJIT_MOVU_SB:
return emit_op(compiler, SLJIT_MOV_SB, ALLOW_ANY_IMM | SIGNED_DATA | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb)srcw : srcw);
case SLJIT_MOVU_UH:
return emit_op(compiler, SLJIT_MOV_UH, ALLOW_ANY_IMM | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh)srcw : srcw);
case SLJIT_MOVU_SH:
return emit_op(compiler, SLJIT_MOV_SH, ALLOW_ANY_IMM | SIGNED_DATA | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh)srcw : srcw);
case SLJIT_NOT:
return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_NEG:
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
compiler->skip_checks = 1;
#endif
return sljit_emit_op2(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), dst, dstw, SLJIT_IMM, 0, src, srcw);
case SLJIT_CLZ:
return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
CHECK_ERROR();
check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
switch (GET_OPCODE(op)) {
case SLJIT_ADD:
case SLJIT_ADDC:
case SLJIT_SUB:
case SLJIT_SUBC:
case SLJIT_OR:
case SLJIT_XOR:
return emit_op(compiler, op, ALLOW_IMM, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_MUL:
return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_AND:
return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SHL:
case SLJIT_LSHR:
case SLJIT_ASHR:
if (src2 & SLJIT_IMM) {
compiler->shift_imm = src2w & 0x1f;
return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src1, src1w);
}
else {
compiler->shift_imm = 0x20;
return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w);
}
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg)
{
check_sljit_get_register_index(reg);
return reg_map[reg];
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_si size)
{
CHECK_ERROR();
check_sljit_emit_op_custom(compiler, instruction, size);
SLJIT_ASSERT(size == 4);
return push_inst(compiler, *(sljit_uw*)instruction);
}
/* --------------------------------------------------------------------- */
/* Floating point operators */
/* --------------------------------------------------------------------- */
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
/* 0 - no fpu
1 - vfp */
static sljit_si arm_fpu_type = -1;
static void init_compiler(void)
{
if (arm_fpu_type != -1)
return;
/* TODO: Only the OS can help to determine the correct fpu type. */
arm_fpu_type = 1;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
{
if (arm_fpu_type == -1)
init_compiler();
return arm_fpu_type;
}
#else
#define arm_fpu_type 1
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
{
/* Always available. */
return 1;
}
#endif
#define FPU_LOAD (1 << 20)
#define EMIT_FPU_DATA_TRANSFER(inst, add, base, freg, offs) \
((inst) | ((add) << 23) | (reg_map[base] << 16) | (freg << 12) | (offs))
#define EMIT_FPU_OPERATION(opcode, mode, dst, src1, src2) \
((opcode) | (mode) | ((dst) << 12) | (src1) | ((src2) << 16))
static sljit_si emit_fop_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
sljit_sw tmp;
sljit_uw imm;
sljit_sw inst = VSTR_F32 | (flags & (SLJIT_SINGLE_OP | FPU_LOAD));
SLJIT_ASSERT(arg & SLJIT_MEM);
if (SLJIT_UNLIKELY(arg & 0xf0)) {
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG1, arg & 0xf, RM((arg >> 4) & 0xf) | ((argw & 0x3) << 7)));
arg = SLJIT_MEM | TMP_REG1;
argw = 0;
}
/* Fast loads and stores. */
if ((arg & 0xf)) {
if (!(argw & ~0x3fc))
return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, arg & 0xf, reg, argw >> 2));
if (!(-argw & ~0x3fc))
return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 0, arg & 0xf, reg, (-argw) >> 2));
}
if (compiler->cache_arg == arg) {
tmp = argw - compiler->cache_argw;
if (!(tmp & ~0x3fc))
return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, TMP_REG3, reg, tmp >> 2));
if (!(-tmp & ~0x3fc))
return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 0, TMP_REG3, reg, -tmp >> 2));
if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, tmp) != SLJIT_ERR_UNSUPPORTED) {
FAIL_IF(compiler->error);
compiler->cache_argw = argw;
return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, TMP_REG3, reg, 0));
}
}
if (arg & 0xf) {
if (emit_set_delta(compiler, TMP_REG1, arg & 0xf, argw) != SLJIT_ERR_UNSUPPORTED) {
FAIL_IF(compiler->error);
return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, TMP_REG1, reg, 0));
}
imm = get_imm(argw & ~0x3fc);
if (imm) {
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG1, arg & 0xf, imm));
return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, TMP_REG1, reg, (argw & 0x3fc) >> 2));
}
imm = get_imm(-argw & ~0x3fc);
if (imm) {
argw = -argw;
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP, 0, TMP_REG1, arg & 0xf, imm));
return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 0, TMP_REG1, reg, (argw & 0x3fc) >> 2));
}
}
compiler->cache_arg = arg;
compiler->cache_argw = argw;
if (arg & 0xf) {
FAIL_IF(load_immediate(compiler, TMP_REG1, argw));
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG3, arg & 0xf, reg_map[TMP_REG1]));
}
else
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, TMP_REG3, reg, 0));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
sljit_si dst_fr;
CHECK_ERROR();
check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw);
SLJIT_COMPILE_ASSERT((SLJIT_SINGLE_OP == 0x100), float_transfer_bit_error);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
op ^= SLJIT_SINGLE_OP;
if (GET_OPCODE(op) == SLJIT_CMPD) {
if (dst > SLJIT_FLOAT_REG6) {
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, TMP_FREG1, dst, dstw));
dst = TMP_FREG1;
}
if (src > SLJIT_FLOAT_REG6) {
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, TMP_FREG2, src, srcw));
src = TMP_FREG2;
}
EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VCMP_F32, op & SLJIT_SINGLE_OP, dst, src, 0));
EMIT_INSTRUCTION(VMRS);
return SLJIT_SUCCESS;
}
dst_fr = (dst > SLJIT_FLOAT_REG6) ? TMP_FREG1 : dst;
if (src > SLJIT_FLOAT_REG6) {
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, dst_fr, src, srcw));
src = dst_fr;
}
switch (GET_OPCODE(op)) {
case SLJIT_MOVD:
if (src != dst_fr && dst_fr != TMP_FREG1)
EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VMOV_F32, op & SLJIT_SINGLE_OP, dst_fr, src, 0));
break;
case SLJIT_NEGD:
EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VNEG_F32, op & SLJIT_SINGLE_OP, dst_fr, src, 0));
break;
case SLJIT_ABSD:
EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VABS_F32, op & SLJIT_SINGLE_OP, dst_fr, src, 0));
break;
}
if (dst_fr == TMP_FREG1) {
if (GET_OPCODE(op) == SLJIT_MOVD)
dst_fr = src;
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP), dst_fr, dst, dstw));
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
sljit_si dst_fr;
CHECK_ERROR();
check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
op ^= SLJIT_SINGLE_OP;
dst_fr = (dst > SLJIT_FLOAT_REG6) ? TMP_FREG1 : dst;
if (src2 > SLJIT_FLOAT_REG6) {
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, TMP_FREG2, src2, src2w));
src2 = TMP_FREG2;
}
if (src1 > SLJIT_FLOAT_REG6) {
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, TMP_FREG1, src1, src1w));
src1 = TMP_FREG1;
}
switch (GET_OPCODE(op)) {
case SLJIT_ADDD:
EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VADD_F32, op & SLJIT_SINGLE_OP, dst_fr, src2, src1));
break;
case SLJIT_SUBD:
EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VSUB_F32, op & SLJIT_SINGLE_OP, dst_fr, src2, src1));
break;
case SLJIT_MULD:
EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VMUL_F32, op & SLJIT_SINGLE_OP, dst_fr, src2, src1));
break;
case SLJIT_DIVD:
EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VDIV_F32, op & SLJIT_SINGLE_OP, dst_fr, src2, src1));
break;
}
if (dst_fr == TMP_FREG1)
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP), TMP_FREG1, dst, dstw));
return SLJIT_SUCCESS;
}
#undef FPU_LOAD
#undef EMIT_FPU_DATA_TRANSFER
#undef EMIT_FPU_OPERATION
/* --------------------------------------------------------------------- */
/* Other instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
{
CHECK_ERROR();
check_sljit_emit_fast_enter(compiler, dst, dstw);
ADJUST_LOCAL_OFFSET(dst, dstw);
/* For UNUSED dst. Uncommon, but possible. */
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
if (dst <= TMP_REG3)
return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, RM(TMP_REG3)));
/* Memory. */
if (getput_arg_fast(compiler, WORD_DATA, TMP_REG3, dst, dstw))
return compiler->error;
/* TMP_REG3 is used for caching. */
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG2, SLJIT_UNUSED, RM(TMP_REG3)));
compiler->cache_arg = 0;
compiler->cache_argw = 0;
return getput_arg(compiler, WORD_DATA, TMP_REG2, dst, dstw, 0, 0);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
{
CHECK_ERROR();
check_sljit_emit_fast_return(compiler, src, srcw);
ADJUST_LOCAL_OFFSET(src, srcw);
if (src <= TMP_REG3)
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(src)));
else if (src & SLJIT_MEM) {
if (getput_arg_fast(compiler, WORD_DATA | LOAD_DATA, TMP_REG3, src, srcw))
FAIL_IF(compiler->error);
else {
compiler->cache_arg = 0;
compiler->cache_argw = 0;
FAIL_IF(getput_arg(compiler, WORD_DATA | LOAD_DATA, TMP_REG2, src, srcw, 0, 0));
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(TMP_REG2)));
}
}
else if (src & SLJIT_IMM)
FAIL_IF(load_immediate(compiler, TMP_REG3, srcw));
return push_inst(compiler, BLX | RM(TMP_REG3));
}
/* --------------------------------------------------------------------- */
/* Conditional instructions */
/* --------------------------------------------------------------------- */
static sljit_uw get_cc(sljit_si type)
{
switch (type) {
case SLJIT_C_EQUAL:
case SLJIT_C_MUL_NOT_OVERFLOW:
case SLJIT_C_FLOAT_EQUAL:
return 0x00000000;
case SLJIT_C_NOT_EQUAL:
case SLJIT_C_MUL_OVERFLOW:
case SLJIT_C_FLOAT_NOT_EQUAL:
return 0x10000000;
case SLJIT_C_LESS:
case SLJIT_C_FLOAT_LESS:
return 0x30000000;
case SLJIT_C_GREATER_EQUAL:
case SLJIT_C_FLOAT_GREATER_EQUAL:
return 0x20000000;
case SLJIT_C_GREATER:
case SLJIT_C_FLOAT_GREATER:
return 0x80000000;
case SLJIT_C_LESS_EQUAL:
case SLJIT_C_FLOAT_LESS_EQUAL:
return 0x90000000;
case SLJIT_C_SIG_LESS:
return 0xb0000000;
case SLJIT_C_SIG_GREATER_EQUAL:
return 0xa0000000;
case SLJIT_C_SIG_GREATER:
return 0xc0000000;
case SLJIT_C_SIG_LESS_EQUAL:
return 0xd0000000;
case SLJIT_C_OVERFLOW:
case SLJIT_C_FLOAT_UNORDERED:
return 0x60000000;
case SLJIT_C_NOT_OVERFLOW:
case SLJIT_C_FLOAT_ORDERED:
return 0x70000000;
default: /* SLJIT_JUMP */
return 0xe0000000;
}
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
struct sljit_label *label;
CHECK_ERROR_PTR();
check_sljit_emit_label(compiler);
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
return label;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
{
struct sljit_jump *jump;
CHECK_ERROR_PTR();
check_sljit_emit_jump(compiler, type);
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
/* In ARM, we don't need to touch the arguments. */
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
if (type >= SLJIT_FAST_CALL)
PTR_FAIL_IF(prepare_blx(compiler));
PTR_FAIL_IF(push_inst_with_unique_literal(compiler, ((EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0,
type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0)) & ~COND_MASK) | get_cc(type), 0));
if (jump->flags & SLJIT_REWRITABLE_JUMP) {
jump->addr = compiler->size;
compiler->patches++;
}
if (type >= SLJIT_FAST_CALL) {
jump->flags |= IS_BL;
PTR_FAIL_IF(emit_blx(compiler));
}
if (!(jump->flags & SLJIT_REWRITABLE_JUMP))
jump->addr = compiler->size;
#else
if (type >= SLJIT_FAST_CALL)
jump->flags |= IS_BL;
PTR_FAIL_IF(emit_imm(compiler, TMP_REG1, 0));
PTR_FAIL_IF(push_inst(compiler, (((type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)) & ~COND_MASK) | get_cc(type)));
jump->addr = compiler->size;
#endif
return jump;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
{
struct sljit_jump *jump;
CHECK_ERROR();
check_sljit_emit_ijump(compiler, type, src, srcw);
ADJUST_LOCAL_OFFSET(src, srcw);
/* In ARM, we don't need to touch the arguments. */
if (src & SLJIT_IMM) {
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF(!jump);
set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0));
jump->u.target = srcw;
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
if (type >= SLJIT_FAST_CALL)
FAIL_IF(prepare_blx(compiler));
FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0), 0));
if (type >= SLJIT_FAST_CALL)
FAIL_IF(emit_blx(compiler));
#else
FAIL_IF(emit_imm(compiler, TMP_REG1, 0));
FAIL_IF(push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)));
#endif
jump->addr = compiler->size;
}
else {
if (src <= TMP_REG3)
return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(src));
SLJIT_ASSERT(src & SLJIT_MEM);
FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, TMP_REG2, src, srcw));
return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG2));
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw,
sljit_si type)
{
sljit_si dst_r, flags = GET_ALL_FLAGS(op);
sljit_uw cc, ins;
CHECK_ERROR();
check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type);
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
op = GET_OPCODE(op);
cc = get_cc(type);
dst_r = (dst <= TMP_REG3) ? dst : TMP_REG2;
if (op < SLJIT_ADD) {
EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst_r, SLJIT_UNUSED, SRC2_IMM | 0));
EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst_r, SLJIT_UNUSED, SRC2_IMM | 1) & ~COND_MASK) | cc);
return (dst_r == TMP_REG2) ? emit_op_mem(compiler, WORD_DATA, TMP_REG2, dst, dstw) : SLJIT_SUCCESS;
}
ins = (op == SLJIT_AND ? AND_DP : (op == SLJIT_OR ? ORR_DP : EOR_DP));
if ((op == SLJIT_OR || op == SLJIT_XOR) && dst <= TMP_REG3 && dst == src) {
EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(ins, 0, dst, dst, SRC2_IMM | 1) & ~COND_MASK) | cc);
/* The condition must always be set, even if the ORR/EOR is not executed above. */
return (flags & SLJIT_SET_E) ? push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, SET_FLAGS, TMP_REG1, SLJIT_UNUSED, RM(dst))) : SLJIT_SUCCESS;
}
compiler->cache_arg = 0;
compiler->cache_argw = 0;
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, WORD_DATA | LOAD_DATA, TMP_REG1, src, srcw, dst, dstw));
src = TMP_REG1;
srcw = 0;
} else if (src & SLJIT_IMM) {
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
src = TMP_REG1;
srcw = 0;
}
EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(ins, 0, dst_r, src, SRC2_IMM | 1) & ~COND_MASK) | cc);
EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(ins, 0, dst_r, src, SRC2_IMM | 0) & ~COND_MASK) | (cc ^ 0x10000000));
if (dst_r == TMP_REG2)
FAIL_IF(emit_op_mem2(compiler, WORD_DATA, TMP_REG2, dst, dstw, 0, 0));
return (flags & SLJIT_SET_E) ? push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, SET_FLAGS, TMP_REG1, SLJIT_UNUSED, RM(dst_r))) : SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
{
struct sljit_const *const_;
sljit_si reg;
CHECK_ERROR_PTR();
check_sljit_emit_const(compiler, dst, dstw, init_value);
ADJUST_LOCAL_OFFSET(dst, dstw);
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
reg = (dst <= TMP_REG3) ? dst : TMP_REG2;
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
PTR_FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, reg, TMP_PC, 0), init_value));
compiler->patches++;
#else
PTR_FAIL_IF(emit_imm(compiler, reg, init_value));
#endif
set_const(const_, compiler);
if (reg == TMP_REG2 && dst != SLJIT_UNUSED)
PTR_FAIL_IF(emit_op_mem(compiler, WORD_DATA, TMP_REG2, dst, dstw));
return const_;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
{
inline_set_jump_addr(addr, new_addr, 1);
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
{
inline_set_const(addr, new_constant, 1);
}