2014-07-04 22:28:24 +00:00
|
|
|
/*
|
|
|
|
* Stack-less Just-In-Time compiler
|
|
|
|
*
|
|
|
|
* Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without modification, are
|
|
|
|
* permitted provided that the following conditions are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
|
|
* conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
|
|
* of conditions and the following disclaimer in the documentation and/or other materials
|
|
|
|
* provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
|
|
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
|
|
|
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
|
|
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _SLJIT_LIR_H_
|
|
|
|
#define _SLJIT_LIR_H_
|
|
|
|
|
|
|
|
/*
|
|
|
|
------------------------------------------------------------------------
|
|
|
|
Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
|
|
|
|
------------------------------------------------------------------------
|
|
|
|
|
|
|
|
Short description
|
|
|
|
Advantages:
|
|
|
|
- The execution can be continued from any LIR instruction. In other
|
|
|
|
words, it is possible to jump to any label from anywhere, even from
|
|
|
|
a code fragment, which is compiled later, if both compiled code
|
|
|
|
shares the same context. See sljit_emit_enter for more details
|
|
|
|
- Supports self modifying code: target of (conditional) jump and call
|
|
|
|
instructions and some constant values can be dynamically modified
|
|
|
|
during runtime
|
|
|
|
- although it is not suggested to do it frequently
|
|
|
|
- can be used for inline caching: save an important value once
|
|
|
|
in the instruction stream
|
|
|
|
- since this feature limits the optimization possibilities, a
|
|
|
|
special flag must be passed at compile time when these
|
|
|
|
instructions are emitted
|
|
|
|
- A fixed stack space can be allocated for local variables
|
|
|
|
- The compiler is thread-safe
|
|
|
|
- The compiler is highly configurable through preprocessor macros.
|
|
|
|
You can disable unneeded features (multithreading in single
|
|
|
|
threaded applications), and you can use your own system functions
|
|
|
|
(including memory allocators). See sljitConfig.h
|
|
|
|
Disadvantages:
|
|
|
|
- No automatic register allocation, and temporary results are
|
|
|
|
not stored on the stack. (hence the name comes)
|
|
|
|
- Limited number of registers (only 6+4 integer registers, max 3+2
|
|
|
|
scratch, max 3+2 saved and 6 floating point registers)
|
|
|
|
In practice:
|
|
|
|
- This approach is very effective for interpreters
|
|
|
|
- One of the saved registers typically points to a stack interface
|
|
|
|
- It can jump to any exception handler anytime (even if it belongs
|
|
|
|
to another function)
|
|
|
|
- Hot paths can be modified during runtime reflecting the changes
|
|
|
|
of the fastest execution path of the dynamic language
|
|
|
|
- SLJIT supports complex memory addressing modes
|
|
|
|
- mainly position and context independent code (except some cases)
|
|
|
|
|
|
|
|
For valgrind users:
|
|
|
|
- pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
|
|
|
|
#include "sljitConfig.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* The following header file defines useful macros for fine tuning
|
2014-07-05 11:53:30 +00:00
|
|
|
sljit based code generators. They are listed in the beginning
|
2014-07-04 22:28:24 +00:00
|
|
|
of sljitConfigInternal.h */
|
|
|
|
|
|
|
|
#include "sljitConfigInternal.h"
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* Error codes */
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/* Indicates no error. */
|
|
|
|
#define SLJIT_SUCCESS 0
|
|
|
|
/* After the call of sljit_generate_code(), the error code of the compiler
|
|
|
|
is set to this value to avoid future sljit calls (in debug mode at least).
|
|
|
|
The complier should be freed after sljit_generate_code(). */
|
|
|
|
#define SLJIT_ERR_COMPILED 1
|
|
|
|
/* Cannot allocate non executable memory. */
|
|
|
|
#define SLJIT_ERR_ALLOC_FAILED 2
|
|
|
|
/* Cannot allocate executable memory.
|
|
|
|
Only for sljit_generate_code() */
|
|
|
|
#define SLJIT_ERR_EX_ALLOC_FAILED 3
|
|
|
|
/* return value for SLJIT_CONFIG_UNSUPPORTED empty architecture. */
|
|
|
|
#define SLJIT_ERR_UNSUPPORTED 4
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* Registers */
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
#define SLJIT_UNUSED 0
|
|
|
|
|
|
|
|
/* Scratch (temporary) registers whose may not preserve their values
|
|
|
|
across function calls. */
|
|
|
|
#define SLJIT_SCRATCH_REG1 1
|
|
|
|
#define SLJIT_SCRATCH_REG2 2
|
|
|
|
#define SLJIT_SCRATCH_REG3 3
|
|
|
|
/* Note: extra registers cannot be used for memory addressing. */
|
|
|
|
/* Note: on x86-32, these registers are emulated (using stack
|
|
|
|
loads & stores). */
|
|
|
|
#define SLJIT_TEMPORARY_EREG1 4
|
|
|
|
#define SLJIT_TEMPORARY_EREG2 5
|
|
|
|
|
|
|
|
/* Saved registers whose preserve their values across function calls. */
|
|
|
|
#define SLJIT_SAVED_REG1 6
|
|
|
|
#define SLJIT_SAVED_REG2 7
|
|
|
|
#define SLJIT_SAVED_REG3 8
|
|
|
|
/* Note: extra registers cannot be used for memory addressing. */
|
|
|
|
/* Note: on x86-32, these registers are emulated (using stack
|
|
|
|
loads & stores). */
|
|
|
|
#define SLJIT_SAVED_EREG1 9
|
|
|
|
#define SLJIT_SAVED_EREG2 10
|
|
|
|
|
|
|
|
/* Read-only register (cannot be the destination of an operation).
|
|
|
|
Only SLJIT_MEM1(SLJIT_LOCALS_REG) addressing mode is allowed since
|
|
|
|
several ABIs has certain limitations about the stack layout. However
|
|
|
|
sljit_get_local_base() can be used to obtain the offset of a value
|
|
|
|
on the stack. */
|
|
|
|
#define SLJIT_LOCALS_REG 11
|
|
|
|
|
|
|
|
/* Number of registers. */
|
|
|
|
#define SLJIT_NO_TMP_REGISTERS 5
|
|
|
|
#define SLJIT_NO_GEN_REGISTERS 5
|
|
|
|
#define SLJIT_NO_REGISTERS 11
|
|
|
|
|
|
|
|
/* Return with machine word. */
|
|
|
|
|
|
|
|
#define SLJIT_RETURN_REG SLJIT_SCRATCH_REG1
|
|
|
|
|
|
|
|
/* x86 prefers specific registers for special purposes. In case of shift
|
|
|
|
by register it supports only SLJIT_SCRATCH_REG3 for shift argument
|
|
|
|
(which is the src2 argument of sljit_emit_op2). If another register is
|
|
|
|
used, sljit must exchange data between registers which cause a minor
|
|
|
|
slowdown. Other architectures has no such limitation. */
|
|
|
|
|
|
|
|
#define SLJIT_PREF_SHIFT_REG SLJIT_SCRATCH_REG3
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* Floating point registers */
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/* Note: SLJIT_UNUSED as destination is not valid for floating point
|
|
|
|
operations, since they cannot be used for setting flags. */
|
|
|
|
|
|
|
|
/* Floating point operations are performed on double or
|
|
|
|
single precision values. */
|
|
|
|
|
2014-07-05 11:53:30 +00:00
|
|
|
#define SLJIT_FLOAT_REG1 1
|
|
|
|
#define SLJIT_FLOAT_REG2 2
|
|
|
|
#define SLJIT_FLOAT_REG3 3
|
|
|
|
#define SLJIT_FLOAT_REG4 4
|
|
|
|
#define SLJIT_FLOAT_REG5 5
|
|
|
|
#define SLJIT_FLOAT_REG6 6
|
|
|
|
|
|
|
|
#define SLJIT_NO_FLOAT_REGISTERS 6
|
2014-07-04 22:28:24 +00:00
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* Main structures and functions */
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
struct sljit_memory_fragment {
|
|
|
|
struct sljit_memory_fragment *next;
|
|
|
|
sljit_uw used_size;
|
|
|
|
/* Must be aligned to sljit_sw. */
|
|
|
|
sljit_ub memory[1];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct sljit_label {
|
|
|
|
struct sljit_label *next;
|
|
|
|
sljit_uw addr;
|
|
|
|
/* The maximum size difference. */
|
|
|
|
sljit_uw size;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct sljit_jump {
|
|
|
|
struct sljit_jump *next;
|
|
|
|
sljit_uw addr;
|
|
|
|
sljit_sw flags;
|
|
|
|
union {
|
|
|
|
sljit_uw target;
|
|
|
|
struct sljit_label* label;
|
|
|
|
} u;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct sljit_const {
|
|
|
|
struct sljit_const *next;
|
|
|
|
sljit_uw addr;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct sljit_compiler {
|
|
|
|
sljit_si error;
|
|
|
|
|
|
|
|
struct sljit_label *labels;
|
|
|
|
struct sljit_jump *jumps;
|
|
|
|
struct sljit_const *consts;
|
|
|
|
struct sljit_label *last_label;
|
|
|
|
struct sljit_jump *last_jump;
|
|
|
|
struct sljit_const *last_const;
|
|
|
|
|
|
|
|
struct sljit_memory_fragment *buf;
|
|
|
|
struct sljit_memory_fragment *abuf;
|
|
|
|
|
|
|
|
/* Used local registers. */
|
|
|
|
sljit_si scratches;
|
|
|
|
/* Used saved registers. */
|
|
|
|
sljit_si saveds;
|
|
|
|
/* Local stack size. */
|
|
|
|
sljit_si local_size;
|
|
|
|
/* Code size. */
|
|
|
|
sljit_uw size;
|
|
|
|
/* For statistical purposes. */
|
|
|
|
sljit_uw executable_size;
|
|
|
|
|
|
|
|
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
|
|
|
|
sljit_si args;
|
|
|
|
sljit_si locals_offset;
|
|
|
|
sljit_si scratches_start;
|
|
|
|
sljit_si saveds_start;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
|
|
|
|
sljit_si mode32;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
|
|
|
|
sljit_si flags_saved;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
|
|
|
|
/* Constant pool handling. */
|
|
|
|
sljit_uw *cpool;
|
|
|
|
sljit_ub *cpool_unique;
|
|
|
|
sljit_uw cpool_diff;
|
|
|
|
sljit_uw cpool_fill;
|
|
|
|
/* Other members. */
|
|
|
|
/* Contains pointer, "ldr pc, [...]" pairs. */
|
|
|
|
sljit_uw patches;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
|
|
|
|
/* Temporary fields. */
|
|
|
|
sljit_uw shift_imm;
|
|
|
|
sljit_si cache_arg;
|
|
|
|
sljit_sw cache_argw;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (defined SLJIT_CONFIG_ARM_THUMB2 && SLJIT_CONFIG_ARM_THUMB2)
|
|
|
|
sljit_si cache_arg;
|
|
|
|
sljit_sw cache_argw;
|
|
|
|
#endif
|
|
|
|
|
2014-07-05 11:53:30 +00:00
|
|
|
#if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
|
|
|
|
sljit_si locals_offset;
|
|
|
|
sljit_si cache_arg;
|
|
|
|
sljit_sw cache_argw;
|
|
|
|
#endif
|
|
|
|
|
2014-07-04 22:28:24 +00:00
|
|
|
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) || (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
|
|
|
|
sljit_sw imm;
|
|
|
|
sljit_si cache_arg;
|
|
|
|
sljit_sw cache_argw;
|
|
|
|
#endif
|
|
|
|
|
2014-07-05 11:53:30 +00:00
|
|
|
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) || (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
|
2014-07-04 22:28:24 +00:00
|
|
|
sljit_si delay_slot;
|
|
|
|
sljit_si cache_arg;
|
|
|
|
sljit_sw cache_argw;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
|
|
|
|
sljit_si delay_slot;
|
|
|
|
sljit_si cache_arg;
|
|
|
|
sljit_sw cache_argw;
|
|
|
|
#endif
|
|
|
|
|
2014-07-05 11:53:30 +00:00
|
|
|
#if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
|
|
|
|
sljit_si cache_arg;
|
|
|
|
sljit_sw cache_argw;
|
|
|
|
#endif
|
|
|
|
|
2014-07-04 22:28:24 +00:00
|
|
|
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
|
|
|
|
FILE* verbose;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
|
|
|
|
/* Local size passed to the functions. */
|
|
|
|
sljit_si logical_local_size;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
|
|
|
|
sljit_si skip_checks;
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* Main functions */
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/* Creates an sljit compiler.
|
|
|
|
Returns NULL if failed. */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void);
|
|
|
|
|
|
|
|
/* Free everything except the compiled machine code. */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
|
|
|
|
|
2014-07-05 11:53:30 +00:00
|
|
|
/* Returns the current error code. If an error is occurred, future sljit
|
2014-07-04 22:28:24 +00:00
|
|
|
calls which uses the same compiler argument returns early with the same
|
|
|
|
error code. Thus there is no need for checking the error after every
|
|
|
|
call, it is enough to do it before the code is compiled. Removing
|
|
|
|
these checks increases the performance of the compiling process. */
|
|
|
|
static SLJIT_INLINE sljit_si sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
|
|
|
|
|
|
|
|
/*
|
|
|
|
Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
|
|
|
|
and <= 128 bytes on 64 bit architectures. The memory area is owned by the
|
|
|
|
compiler, and freed by sljit_free_compiler. The returned pointer is
|
|
|
|
sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
|
|
|
|
the compiling, and no need to worry about freeing them. The size is
|
|
|
|
enough to contain at most 16 pointers. If the size is outside of the range,
|
|
|
|
the function will return with NULL. However, this return value does not
|
|
|
|
indicate that there is no more memory (does not set the current error code
|
|
|
|
of the compiler to out-of-memory status).
|
|
|
|
*/
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_si size);
|
|
|
|
|
|
|
|
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
|
|
|
|
/* Passing NULL disables verbose. */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
|
|
|
|
|
|
|
|
/*
|
|
|
|
After the machine code generation is finished we can retrieve the allocated
|
|
|
|
executable memory size, although this area may not be fully filled with
|
|
|
|
instructions depending on some optimizations. This function is useful only
|
|
|
|
for statistical purposes.
|
|
|
|
|
|
|
|
Before a successful code generation, this function returns with 0.
|
|
|
|
*/
|
|
|
|
static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
|
|
|
|
|
|
|
|
/* Instruction generation. Returns with any error code. If there is no
|
|
|
|
error, they return with SLJIT_SUCCESS. */
|
|
|
|
|
|
|
|
/*
|
|
|
|
The executable code is basically a function call from the viewpoint of
|
|
|
|
the C language. The function calls must obey to the ABI (Application
|
|
|
|
Binary Interface) of the platform, which specify the purpose of machine
|
|
|
|
registers and stack handling among other things. The sljit_emit_enter
|
|
|
|
function emits the necessary instructions for setting up a new context
|
|
|
|
for the executable code and moves function arguments to the saved
|
|
|
|
registers. The number of arguments are specified in the "args"
|
|
|
|
parameter and the first argument goes to SLJIT_SAVED_REG1, the second
|
|
|
|
goes to SLJIT_SAVED_REG2 and so on. The number of scratch and
|
|
|
|
saved registers are passed in "scratches" and "saveds" arguments
|
|
|
|
respectively. Since the saved registers contains the arguments,
|
|
|
|
"args" must be less or equal than "saveds". The sljit_emit_enter
|
|
|
|
is also capable of allocating a stack space for local variables. The
|
|
|
|
"local_size" argument contains the size in bytes of this local area
|
|
|
|
and its staring address is stored in SLJIT_LOCALS_REG. However
|
|
|
|
the SLJIT_LOCALS_REG is not necessary the machine stack pointer.
|
|
|
|
The memory bytes between SLJIT_LOCALS_REG (inclusive) and
|
|
|
|
SLJIT_LOCALS_REG + local_size (exclusive) can be modified freely
|
|
|
|
until the function returns. The stack space is uninitialized.
|
|
|
|
|
|
|
|
Note: every call of sljit_emit_enter and sljit_set_context
|
|
|
|
overwrites the previous context. */
|
|
|
|
|
|
|
|
#define SLJIT_MAX_LOCAL_SIZE 65536
|
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
|
|
|
|
sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size);
|
|
|
|
|
|
|
|
/* The machine code has a context (which contains the local stack space size,
|
|
|
|
number of used registers, etc.) which initialized by sljit_emit_enter. Several
|
|
|
|
functions (like sljit_emit_return) requres this context to be able to generate
|
|
|
|
the appropriate code. However, some code fragments (like inline cache) may have
|
|
|
|
no normal entry point so their context is unknown for the compiler. Using the
|
|
|
|
function below we can specify their context.
|
|
|
|
|
|
|
|
Note: every call of sljit_emit_enter and sljit_set_context overwrites
|
|
|
|
the previous context. */
|
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler,
|
|
|
|
sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size);
|
|
|
|
|
|
|
|
/* Return from machine code. The op argument can be SLJIT_UNUSED which means the
|
|
|
|
function does not return with anything or any opcode between SLJIT_MOV and
|
|
|
|
SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
|
|
|
|
is SLJIT_UNUSED, otherwise see below the description about source and
|
|
|
|
destination arguments. */
|
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op,
|
|
|
|
sljit_si src, sljit_sw srcw);
|
|
|
|
|
|
|
|
/* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
|
|
|
|
even the stack frame is passed to the callee. The return address is preserved in
|
|
|
|
dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
|
|
|
|
is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
|
|
|
|
|
|
|
|
/* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
|
|
|
|
instructions are needed. Excellent for small uility functions, where saving registers
|
|
|
|
and setting up a new stack frame would cost too much performance. However, it is still
|
|
|
|
possible to return to the address of the caller (or anywhere else). */
|
|
|
|
|
|
|
|
/* Note: flags are not changed (unlike sljit_emit_enter / sljit_emit_return). */
|
|
|
|
|
|
|
|
/* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
|
|
|
|
since many architectures do clever branch prediction on call / return instruction pairs. */
|
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw);
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw);
|
|
|
|
|
|
|
|
/*
|
|
|
|
Source and destination values for arithmetical instructions
|
|
|
|
imm - a simple immediate value (cannot be used as a destination)
|
|
|
|
reg - any of the registers (immediate argument must be 0)
|
|
|
|
[imm] - absolute immediate memory address
|
|
|
|
[reg+imm] - indirect memory address
|
|
|
|
[reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
|
|
|
|
useful for (byte, half, int, sljit_sw) array access
|
|
|
|
(fully supported by both x86 and ARM architectures, and cheap operation on others)
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
IMPORATNT NOTE: memory access MUST be naturally aligned except
|
|
|
|
SLJIT_UNALIGNED macro is defined and its value is 1.
|
|
|
|
|
|
|
|
length | alignment
|
|
|
|
---------+-----------
|
|
|
|
byte | 1 byte (any physical_address is accepted)
|
|
|
|
half | 2 byte (physical_address & 0x1 == 0)
|
|
|
|
int | 4 byte (physical_address & 0x3 == 0)
|
|
|
|
word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
|
|
|
|
| 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
|
|
|
|
pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
|
|
|
|
| on 64 bit machines)
|
|
|
|
|
|
|
|
Note: Different architectures have different addressing limitations.
|
|
|
|
A single instruction is enough for the following addressing
|
|
|
|
modes. Other adrressing modes are emulated by instruction
|
|
|
|
sequences. This information could help to improve those code
|
|
|
|
generators which focuses only a few architectures.
|
|
|
|
|
2014-07-05 11:53:30 +00:00
|
|
|
x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
|
2014-07-04 22:28:24 +00:00
|
|
|
[reg+(reg<<imm)] is supported
|
|
|
|
[imm], -2^32+1 <= imm <= 2^32-1 is supported
|
|
|
|
Write-back is not supported
|
|
|
|
arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
|
|
|
|
bytes, any halfs or floating point values)
|
|
|
|
[reg+(reg<<imm)] is supported
|
|
|
|
Write-back is supported
|
|
|
|
arm-t2: [reg+imm], -255 <= imm <= 4095
|
|
|
|
[reg+(reg<<imm)] is supported
|
|
|
|
Write back is supported only for [reg+imm], where -255 <= imm <= 255
|
|
|
|
ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
|
|
|
|
signed load on 64 bit requires immediates divisible by 4.
|
|
|
|
[reg+imm] is not supported for signed 8 bit values.
|
|
|
|
[reg+reg] is supported
|
|
|
|
Write-back is supported except for one instruction: 32 bit signed
|
|
|
|
load with [reg+imm] addressing mode on 64 bit.
|
|
|
|
mips: [reg+imm], -65536 <= imm <= 65535
|
|
|
|
sparc: [reg+imm], -4096 <= imm <= 4095
|
|
|
|
[reg+reg] is supported
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Register output: simply the name of the register.
|
|
|
|
For destination, you can use SLJIT_UNUSED as well. */
|
2014-07-05 11:53:30 +00:00
|
|
|
#define SLJIT_MEM 0x80
|
2014-07-04 22:28:24 +00:00
|
|
|
#define SLJIT_MEM0() (SLJIT_MEM)
|
|
|
|
#define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
|
2014-07-05 11:53:30 +00:00
|
|
|
#define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
|
|
|
|
#define SLJIT_IMM 0x40
|
2014-07-04 22:28:24 +00:00
|
|
|
|
|
|
|
/* Set 32 bit operation mode (I) on 64 bit CPUs. The flag is totally ignored on
|
|
|
|
32 bit CPUs. If this flag is set for an arithmetic operation, it uses only the
|
|
|
|
lower 32 bit of the input register(s), and set the CPU status flags according
|
|
|
|
to the 32 bit result. The higher 32 bits are undefined for both the input and
|
|
|
|
output. However, the CPU might not ignore those higher 32 bits, like MIPS, which
|
|
|
|
expects it to be the sign extension of the lower 32 bit. All 32 bit operations
|
|
|
|
are undefined, if this condition is not fulfilled. Therefore, when SLJIT_INT_OP
|
|
|
|
is specified, all register arguments must be the result of other operations with
|
|
|
|
the same SLJIT_INT_OP flag. In other words, although a register can hold either
|
|
|
|
a 64 or 32 bit value, these values cannot be mixed. The only exceptions are
|
2014-07-05 11:53:30 +00:00
|
|
|
SLJIT_IMOV and SLJIT_IMOVU (SLJIT_MOV_SI/SLJIT_MOVU_SI with SLJIT_INT_OP flag)
|
|
|
|
which can convert any source argument to SLJIT_INT_OP compatible result. This
|
|
|
|
conversion might be unnecessary on some CPUs like x86-64, since the upper 32
|
|
|
|
bit is always ignored. In this case SLJIT is clever enough to not generate any
|
|
|
|
instructions if the source and destination operands are the same registers.
|
|
|
|
Affects sljit_emit_op0, sljit_emit_op1 and sljit_emit_op2. */
|
2014-07-04 22:28:24 +00:00
|
|
|
#define SLJIT_INT_OP 0x100
|
|
|
|
|
|
|
|
/* Single precision mode (SP). This flag is similar to SLJIT_INT_OP, just
|
|
|
|
it applies to floating point registers (it is even the same bit). When
|
|
|
|
this flag is passed, the CPU performs single precision floating point
|
|
|
|
operations. Similar to SLJIT_INT_OP, all register arguments must be the
|
|
|
|
result of other floating point operations with this flag. Affects
|
|
|
|
sljit_emit_fop1, sljit_emit_fop2 and sljit_emit_fcmp. */
|
|
|
|
#define SLJIT_SINGLE_OP 0x100
|
|
|
|
|
|
|
|
/* Common CPU status flags for all architectures (x86, ARM, PPC)
|
|
|
|
- carry flag
|
|
|
|
- overflow flag
|
|
|
|
- zero flag
|
|
|
|
- negative/positive flag (depends on arc)
|
|
|
|
On mips, these flags are emulated by software. */
|
|
|
|
|
|
|
|
/* By default, the instructions may, or may not set the CPU status flags.
|
|
|
|
Forcing to set or keep status flags can be done with the following flags: */
|
|
|
|
|
|
|
|
/* Note: sljit tries to emit the minimum number of instructions. Using these
|
|
|
|
flags can increase them, so use them wisely to avoid unnecessary code generation. */
|
|
|
|
|
|
|
|
/* Set Equal (Zero) status flag (E). */
|
|
|
|
#define SLJIT_SET_E 0x0200
|
2014-07-05 11:53:30 +00:00
|
|
|
/* Set unsigned status flag (U). */
|
|
|
|
#define SLJIT_SET_U 0x0400
|
2014-07-04 22:28:24 +00:00
|
|
|
/* Set signed status flag (S). */
|
2014-07-05 11:53:30 +00:00
|
|
|
#define SLJIT_SET_S 0x0800
|
2014-07-04 22:28:24 +00:00
|
|
|
/* Set signed overflow flag (O). */
|
|
|
|
#define SLJIT_SET_O 0x1000
|
|
|
|
/* Set carry flag (C).
|
|
|
|
Note: Kinda unsigned overflow, but behaves differently on various cpus. */
|
|
|
|
#define SLJIT_SET_C 0x2000
|
|
|
|
/* Do not modify the flags (K).
|
|
|
|
Note: This flag cannot be combined with any other SLJIT_SET_* flag. */
|
|
|
|
#define SLJIT_KEEP_FLAGS 0x4000
|
|
|
|
|
|
|
|
/* Notes:
|
|
|
|
- you cannot postpone conditional jump instructions except if noted that
|
|
|
|
the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
|
|
|
|
- flag combinations: '|' means 'logical or'. */
|
|
|
|
|
|
|
|
/* Flags: - (never set any flags)
|
|
|
|
Note: breakpoint instruction is not supported by all architectures (namely ppc)
|
|
|
|
It falls back to SLJIT_NOP in those cases. */
|
|
|
|
#define SLJIT_BREAKPOINT 0
|
|
|
|
/* Flags: - (never set any flags)
|
|
|
|
Note: may or may not cause an extra cycle wait
|
|
|
|
it can even decrease the runtime in a few cases. */
|
|
|
|
#define SLJIT_NOP 1
|
|
|
|
/* Flags: - (may destroy flags)
|
|
|
|
Unsigned multiplication of SLJIT_SCRATCH_REG1 and SLJIT_SCRATCH_REG2.
|
|
|
|
Result goes to SLJIT_SCRATCH_REG2:SLJIT_SCRATCH_REG1 (high:low) word */
|
|
|
|
#define SLJIT_UMUL 2
|
|
|
|
/* Flags: - (may destroy flags)
|
|
|
|
Signed multiplication of SLJIT_SCRATCH_REG1 and SLJIT_SCRATCH_REG2.
|
|
|
|
Result goes to SLJIT_SCRATCH_REG2:SLJIT_SCRATCH_REG1 (high:low) word */
|
|
|
|
#define SLJIT_SMUL 3
|
|
|
|
/* Flags: I - (may destroy flags)
|
|
|
|
Unsigned divide of the value in SLJIT_SCRATCH_REG1 by the value in SLJIT_SCRATCH_REG2.
|
|
|
|
The result is placed in SLJIT_SCRATCH_REG1 and the remainder goes to SLJIT_SCRATCH_REG2.
|
|
|
|
Note: if SLJIT_SCRATCH_REG2 contains 0, the behaviour is undefined. */
|
|
|
|
#define SLJIT_UDIV 4
|
|
|
|
#define SLJIT_IUDIV (SLJIT_UDIV | SLJIT_INT_OP)
|
|
|
|
/* Flags: I - (may destroy flags)
|
|
|
|
Signed divide of the value in SLJIT_SCRATCH_REG1 by the value in SLJIT_SCRATCH_REG2.
|
|
|
|
The result is placed in SLJIT_SCRATCH_REG1 and the remainder goes to SLJIT_SCRATCH_REG2.
|
|
|
|
Note: if SLJIT_SCRATCH_REG2 contains 0, the behaviour is undefined. */
|
|
|
|
#define SLJIT_SDIV 5
|
|
|
|
#define SLJIT_ISDIV (SLJIT_SDIV | SLJIT_INT_OP)
|
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op);
|
|
|
|
|
|
|
|
/* Notes for MOV instructions:
|
2014-07-05 11:53:30 +00:00
|
|
|
U = Mov with update (pre form). If source or destination defined as SLJIT_MEM1(r1)
|
2014-07-04 22:28:24 +00:00
|
|
|
or SLJIT_MEM2(r1, r2), r1 is increased by the sum of r2 and the constant argument
|
|
|
|
UB = unsigned byte (8 bit)
|
|
|
|
SB = signed byte (8 bit)
|
|
|
|
UH = unsigned half (16 bit)
|
|
|
|
SH = signed half (16 bit)
|
|
|
|
UI = unsigned int (32 bit)
|
|
|
|
SI = signed int (32 bit)
|
|
|
|
P = pointer (sljit_p) size */
|
|
|
|
|
|
|
|
/* Flags: - (never set any flags) */
|
|
|
|
#define SLJIT_MOV 6
|
|
|
|
/* Flags: I - (never set any flags) */
|
|
|
|
#define SLJIT_MOV_UB 7
|
|
|
|
#define SLJIT_IMOV_UB (SLJIT_MOV_UB | SLJIT_INT_OP)
|
|
|
|
/* Flags: I - (never set any flags) */
|
|
|
|
#define SLJIT_MOV_SB 8
|
|
|
|
#define SLJIT_IMOV_SB (SLJIT_MOV_SB | SLJIT_INT_OP)
|
|
|
|
/* Flags: I - (never set any flags) */
|
|
|
|
#define SLJIT_MOV_UH 9
|
|
|
|
#define SLJIT_IMOV_UH (SLJIT_MOV_UH | SLJIT_INT_OP)
|
|
|
|
/* Flags: I - (never set any flags) */
|
|
|
|
#define SLJIT_MOV_SH 10
|
|
|
|
#define SLJIT_IMOV_SH (SLJIT_MOV_SH | SLJIT_INT_OP)
|
|
|
|
/* Flags: I - (never set any flags)
|
|
|
|
Note: see SLJIT_INT_OP for further details. */
|
|
|
|
#define SLJIT_MOV_UI 11
|
2014-07-05 11:53:30 +00:00
|
|
|
/* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOV. */
|
2014-07-04 22:28:24 +00:00
|
|
|
/* Flags: I - (never set any flags)
|
|
|
|
Note: see SLJIT_INT_OP for further details. */
|
|
|
|
#define SLJIT_MOV_SI 12
|
|
|
|
#define SLJIT_IMOV (SLJIT_MOV_SI | SLJIT_INT_OP)
|
|
|
|
/* Flags: - (never set any flags) */
|
|
|
|
#define SLJIT_MOV_P 13
|
|
|
|
/* Flags: - (never set any flags) */
|
|
|
|
#define SLJIT_MOVU 14
|
|
|
|
/* Flags: I - (never set any flags) */
|
|
|
|
#define SLJIT_MOVU_UB 15
|
|
|
|
#define SLJIT_IMOVU_UB (SLJIT_MOVU_UB | SLJIT_INT_OP)
|
|
|
|
/* Flags: I - (never set any flags) */
|
|
|
|
#define SLJIT_MOVU_SB 16
|
|
|
|
#define SLJIT_IMOVU_SB (SLJIT_MOVU_SB | SLJIT_INT_OP)
|
|
|
|
/* Flags: I - (never set any flags) */
|
|
|
|
#define SLJIT_MOVU_UH 17
|
|
|
|
#define SLJIT_IMOVU_UH (SLJIT_MOVU_UH | SLJIT_INT_OP)
|
|
|
|
/* Flags: I - (never set any flags) */
|
|
|
|
#define SLJIT_MOVU_SH 18
|
|
|
|
#define SLJIT_IMOVU_SH (SLJIT_MOVU_SH | SLJIT_INT_OP)
|
|
|
|
/* Flags: I - (never set any flags)
|
|
|
|
Note: see SLJIT_INT_OP for further details. */
|
|
|
|
#define SLJIT_MOVU_UI 19
|
2014-07-05 11:53:30 +00:00
|
|
|
/* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOVU. */
|
2014-07-04 22:28:24 +00:00
|
|
|
/* Flags: I - (never set any flags)
|
|
|
|
Note: see SLJIT_INT_OP for further details. */
|
|
|
|
#define SLJIT_MOVU_SI 20
|
|
|
|
#define SLJIT_IMOVU (SLJIT_MOVU_SI | SLJIT_INT_OP)
|
|
|
|
/* Flags: - (never set any flags) */
|
|
|
|
#define SLJIT_MOVU_P 21
|
|
|
|
/* Flags: I | E | K */
|
|
|
|
#define SLJIT_NOT 22
|
|
|
|
#define SLJIT_INOT (SLJIT_NOT | SLJIT_INT_OP)
|
|
|
|
/* Flags: I | E | O | K */
|
|
|
|
#define SLJIT_NEG 23
|
|
|
|
#define SLJIT_INEG (SLJIT_NEG | SLJIT_INT_OP)
|
|
|
|
/* Count leading zeroes
|
|
|
|
Flags: I | E | K
|
|
|
|
Important note! Sparc 32 does not support K flag, since
|
|
|
|
the required popc instruction is introduced only in sparc 64. */
|
|
|
|
#define SLJIT_CLZ 24
|
|
|
|
#define SLJIT_ICLZ (SLJIT_CLZ | SLJIT_INT_OP)
|
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
|
|
|
|
sljit_si dst, sljit_sw dstw,
|
|
|
|
sljit_si src, sljit_sw srcw);
|
|
|
|
|
|
|
|
/* Flags: I | E | O | C | K */
|
|
|
|
#define SLJIT_ADD 25
|
|
|
|
#define SLJIT_IADD (SLJIT_ADD | SLJIT_INT_OP)
|
|
|
|
/* Flags: I | C | K */
|
|
|
|
#define SLJIT_ADDC 26
|
|
|
|
#define SLJIT_IADDC (SLJIT_ADDC | SLJIT_INT_OP)
|
2014-07-05 11:53:30 +00:00
|
|
|
/* Flags: I | E | U | S | O | C | K */
|
2014-07-04 22:28:24 +00:00
|
|
|
#define SLJIT_SUB 27
|
|
|
|
#define SLJIT_ISUB (SLJIT_SUB | SLJIT_INT_OP)
|
|
|
|
/* Flags: I | C | K */
|
|
|
|
#define SLJIT_SUBC 28
|
|
|
|
#define SLJIT_ISUBC (SLJIT_SUBC | SLJIT_INT_OP)
|
|
|
|
/* Note: integer mul
|
|
|
|
Flags: I | O (see SLJIT_C_MUL_*) | K */
|
|
|
|
#define SLJIT_MUL 29
|
|
|
|
#define SLJIT_IMUL (SLJIT_MUL | SLJIT_INT_OP)
|
|
|
|
/* Flags: I | E | K */
|
|
|
|
#define SLJIT_AND 30
|
|
|
|
#define SLJIT_IAND (SLJIT_AND | SLJIT_INT_OP)
|
|
|
|
/* Flags: I | E | K */
|
|
|
|
#define SLJIT_OR 31
|
|
|
|
#define SLJIT_IOR (SLJIT_OR | SLJIT_INT_OP)
|
|
|
|
/* Flags: I | E | K */
|
|
|
|
#define SLJIT_XOR 32
|
|
|
|
#define SLJIT_IXOR (SLJIT_XOR | SLJIT_INT_OP)
|
|
|
|
/* Flags: I | E | K
|
|
|
|
Let bit_length be the length of the shift operation: 32 or 64.
|
|
|
|
If src2 is immediate, src2w is masked by (bit_length - 1).
|
|
|
|
Otherwise, if the content of src2 is outside the range from 0
|
|
|
|
to bit_length - 1, the operation is undefined. */
|
|
|
|
#define SLJIT_SHL 33
|
|
|
|
#define SLJIT_ISHL (SLJIT_SHL | SLJIT_INT_OP)
|
|
|
|
/* Flags: I | E | K
|
|
|
|
Let bit_length be the length of the shift operation: 32 or 64.
|
|
|
|
If src2 is immediate, src2w is masked by (bit_length - 1).
|
|
|
|
Otherwise, if the content of src2 is outside the range from 0
|
|
|
|
to bit_length - 1, the operation is undefined. */
|
|
|
|
#define SLJIT_LSHR 34
|
|
|
|
#define SLJIT_ILSHR (SLJIT_LSHR | SLJIT_INT_OP)
|
|
|
|
/* Flags: I | E | K
|
|
|
|
Let bit_length be the length of the shift operation: 32 or 64.
|
|
|
|
If src2 is immediate, src2w is masked by (bit_length - 1).
|
|
|
|
Otherwise, if the content of src2 is outside the range from 0
|
|
|
|
to bit_length - 1, the operation is undefined. */
|
|
|
|
#define SLJIT_ASHR 35
|
|
|
|
#define SLJIT_IASHR (SLJIT_ASHR | SLJIT_INT_OP)
|
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
|
|
|
|
sljit_si dst, sljit_sw dstw,
|
|
|
|
sljit_si src1, sljit_sw src1w,
|
|
|
|
sljit_si src2, sljit_sw src2w);
|
|
|
|
|
|
|
|
/* The following function is a helper function for sljit_emit_op_custom.
|
|
|
|
It returns with the real machine register index of any SLJIT_SCRATCH
|
|
|
|
SLJIT_SAVED or SLJIT_LOCALS register.
|
2014-07-05 11:53:30 +00:00
|
|
|
Note: it returns with -1 for virtual registers (all EREGs on x86-32). */
|
2014-07-04 22:28:24 +00:00
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg);
|
|
|
|
|
2014-07-05 11:53:30 +00:00
|
|
|
/* The following function is a helper function for sljit_emit_op_custom.
|
|
|
|
It returns with the real machine register index of any SLJIT_FLOAT register.
|
|
|
|
Note: the index is divided by 2 on ARM 32 bit architectures. */
|
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg);
|
|
|
|
|
2014-07-04 22:28:24 +00:00
|
|
|
/* Any instruction can be inserted into the instruction stream by
|
|
|
|
sljit_emit_op_custom. It has a similar purpose as inline assembly.
|
|
|
|
The size parameter must match to the instruction size of the target
|
|
|
|
architecture:
|
|
|
|
|
|
|
|
x86: 0 < size <= 15. The instruction argument can be byte aligned.
|
|
|
|
Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
|
|
|
|
if size == 4, the instruction argument must be 4 byte aligned.
|
|
|
|
Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
|
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
|
|
|
|
void *instruction, sljit_si size);
|
|
|
|
|
|
|
|
/* Returns with non-zero if fpu is available. */
|
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void);
|
|
|
|
|
|
|
|
/* Note: dst is the left and src is the right operand for SLJIT_FCMP.
|
|
|
|
Note: NaN check is always performed. If SLJIT_C_FLOAT_UNORDERED is set,
|
|
|
|
the comparison result is unpredictable.
|
|
|
|
Flags: SP | E | S (see SLJIT_C_FLOAT_*) */
|
|
|
|
#define SLJIT_CMPD 36
|
|
|
|
#define SLJIT_CMPS (SLJIT_CMPD | SLJIT_SINGLE_OP)
|
|
|
|
/* Flags: SP - (never set any flags) */
|
|
|
|
#define SLJIT_MOVD 37
|
|
|
|
#define SLJIT_MOVS (SLJIT_MOVD | SLJIT_SINGLE_OP)
|
|
|
|
/* Flags: SP - (never set any flags) */
|
|
|
|
#define SLJIT_NEGD 38
|
|
|
|
#define SLJIT_NEGS (SLJIT_NEGD | SLJIT_SINGLE_OP)
|
|
|
|
/* Flags: SP - (never set any flags) */
|
|
|
|
#define SLJIT_ABSD 39
|
|
|
|
#define SLJIT_ABSS (SLJIT_ABSD | SLJIT_SINGLE_OP)
|
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
|
|
|
|
sljit_si dst, sljit_sw dstw,
|
|
|
|
sljit_si src, sljit_sw srcw);
|
|
|
|
|
|
|
|
/* Flags: SP - (never set any flags) */
|
|
|
|
#define SLJIT_ADDD 40
|
|
|
|
#define SLJIT_ADDS (SLJIT_ADDD | SLJIT_SINGLE_OP)
|
|
|
|
/* Flags: SP - (never set any flags) */
|
|
|
|
#define SLJIT_SUBD 41
|
|
|
|
#define SLJIT_SUBS (SLJIT_SUBD | SLJIT_SINGLE_OP)
|
|
|
|
/* Flags: SP - (never set any flags) */
|
|
|
|
#define SLJIT_MULD 42
|
|
|
|
#define SLJIT_MULS (SLJIT_MULD | SLJIT_SINGLE_OP)
|
|
|
|
/* Flags: SP - (never set any flags) */
|
|
|
|
#define SLJIT_DIVD 43
|
|
|
|
#define SLJIT_DIVS (SLJIT_DIVD | SLJIT_SINGLE_OP)
|
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
|
|
|
|
sljit_si dst, sljit_sw dstw,
|
|
|
|
sljit_si src1, sljit_sw src1w,
|
|
|
|
sljit_si src2, sljit_sw src2w);
|
|
|
|
|
|
|
|
/* Label and jump instructions. */
|
|
|
|
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
|
|
|
|
|
|
|
|
/* Invert conditional instruction: xor (^) with 0x1 */
|
|
|
|
#define SLJIT_C_EQUAL 0
|
|
|
|
#define SLJIT_C_ZERO 0
|
|
|
|
#define SLJIT_C_NOT_EQUAL 1
|
|
|
|
#define SLJIT_C_NOT_ZERO 1
|
|
|
|
|
|
|
|
#define SLJIT_C_LESS 2
|
|
|
|
#define SLJIT_C_GREATER_EQUAL 3
|
|
|
|
#define SLJIT_C_GREATER 4
|
|
|
|
#define SLJIT_C_LESS_EQUAL 5
|
|
|
|
#define SLJIT_C_SIG_LESS 6
|
|
|
|
#define SLJIT_C_SIG_GREATER_EQUAL 7
|
|
|
|
#define SLJIT_C_SIG_GREATER 8
|
|
|
|
#define SLJIT_C_SIG_LESS_EQUAL 9
|
|
|
|
|
|
|
|
#define SLJIT_C_OVERFLOW 10
|
|
|
|
#define SLJIT_C_NOT_OVERFLOW 11
|
|
|
|
|
|
|
|
#define SLJIT_C_MUL_OVERFLOW 12
|
|
|
|
#define SLJIT_C_MUL_NOT_OVERFLOW 13
|
|
|
|
|
|
|
|
#define SLJIT_C_FLOAT_EQUAL 14
|
|
|
|
#define SLJIT_C_FLOAT_NOT_EQUAL 15
|
|
|
|
#define SLJIT_C_FLOAT_LESS 16
|
|
|
|
#define SLJIT_C_FLOAT_GREATER_EQUAL 17
|
|
|
|
#define SLJIT_C_FLOAT_GREATER 18
|
|
|
|
#define SLJIT_C_FLOAT_LESS_EQUAL 19
|
|
|
|
#define SLJIT_C_FLOAT_UNORDERED 20
|
|
|
|
#define SLJIT_C_FLOAT_ORDERED 21
|
|
|
|
|
|
|
|
#define SLJIT_JUMP 22
|
|
|
|
#define SLJIT_FAST_CALL 23
|
|
|
|
#define SLJIT_CALL0 24
|
|
|
|
#define SLJIT_CALL1 25
|
|
|
|
#define SLJIT_CALL2 26
|
|
|
|
#define SLJIT_CALL3 27
|
|
|
|
|
|
|
|
/* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
|
|
|
|
|
|
|
|
/* The target can be changed during runtime (see: sljit_set_jump_addr). */
|
|
|
|
#define SLJIT_REWRITABLE_JUMP 0x1000
|
|
|
|
|
|
|
|
/* Emit a jump instruction. The destination is not set, only the type of the jump.
|
|
|
|
type must be between SLJIT_C_EQUAL and SLJIT_CALL3
|
|
|
|
type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
|
|
|
|
Flags: - (never set any flags) for both conditional and unconditional jumps.
|
|
|
|
Flags: destroy all flags for calls. */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type);
|
|
|
|
|
|
|
|
/* Basic arithmetic comparison. In most architectures it is implemented as
|
|
|
|
an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
|
|
|
|
appropriate flags) followed by a sljit_emit_jump. However some
|
|
|
|
architectures (i.e: MIPS) may employ special optimizations here. It is
|
|
|
|
suggested to use this comparison form when appropriate.
|
|
|
|
type must be between SLJIT_C_EQUAL and SLJIT_C_SIG_LESS_EQUAL
|
|
|
|
type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP or SLJIT_INT_OP
|
|
|
|
Flags: destroy flags. */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_si type,
|
|
|
|
sljit_si src1, sljit_sw src1w,
|
|
|
|
sljit_si src2, sljit_sw src2w);
|
|
|
|
|
|
|
|
/* Basic floating point comparison. In most architectures it is implemented as
|
|
|
|
an SLJIT_FCMP operation (setting appropriate flags) followed by a
|
|
|
|
sljit_emit_jump. However some architectures (i.e: MIPS) may employ
|
|
|
|
special optimizations here. It is suggested to use this comparison form
|
|
|
|
when appropriate.
|
|
|
|
type must be between SLJIT_C_FLOAT_EQUAL and SLJIT_C_FLOAT_ORDERED
|
|
|
|
type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP and SLJIT_SINGLE_OP
|
|
|
|
Flags: destroy flags.
|
|
|
|
Note: if either operand is NaN, the behaviour is undefined for
|
|
|
|
type <= SLJIT_C_FLOAT_LESS_EQUAL. */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_si type,
|
|
|
|
sljit_si src1, sljit_sw src1w,
|
|
|
|
sljit_si src2, sljit_sw src2w);
|
|
|
|
|
|
|
|
/* Set the destination of the jump to this label. */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
|
2014-07-05 11:53:30 +00:00
|
|
|
/* Set the destination address of the jump to this label. */
|
2014-07-04 22:28:24 +00:00
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
|
|
|
|
|
|
|
|
/* Call function or jump anywhere. Both direct and indirect form
|
|
|
|
type must be between SLJIT_JUMP and SLJIT_CALL3
|
|
|
|
Direct form: set src to SLJIT_IMM() and srcw to the address
|
|
|
|
Indirect form: any other valid addressing mode
|
|
|
|
Flags: - (never set any flags) for unconditional jumps.
|
|
|
|
Flags: destroy all flags for calls. */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw);
|
|
|
|
|
|
|
|
/* Perform the operation using the conditional flags as the second argument.
|
|
|
|
Type must always be between SLJIT_C_EQUAL and SLJIT_C_FLOAT_ORDERED. The
|
|
|
|
value represented by the type is 1, if the condition represented by the type
|
|
|
|
is fulfilled, and 0 otherwise.
|
|
|
|
|
|
|
|
If op == SLJIT_MOV, SLJIT_MOV_SI, SLJIT_MOV_UI:
|
|
|
|
Set dst to the value represented by the type (0 or 1).
|
|
|
|
Src must be SLJIT_UNUSED, and srcw must be 0
|
|
|
|
Flags: - (never set any flags)
|
|
|
|
If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
|
|
|
|
Performs the binary operation using src as the first, and the value
|
|
|
|
represented by type as the second argument.
|
|
|
|
Important note: only dst=src and dstw=srcw is supported at the moment!
|
|
|
|
Flags: I | E | K
|
|
|
|
Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
|
|
|
|
sljit_si dst, sljit_sw dstw,
|
|
|
|
sljit_si src, sljit_sw srcw,
|
|
|
|
sljit_si type);
|
|
|
|
|
|
|
|
/* Copies the base address of SLJIT_LOCALS_REG+offset to dst.
|
|
|
|
Flags: - (never set any flags) */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_local_base(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw offset);
|
|
|
|
|
|
|
|
/* The constant can be changed runtime (see: sljit_set_const)
|
|
|
|
Flags: - (never set any flags) */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value);
|
|
|
|
|
|
|
|
/* After the code generation the address for label, jump and const instructions
|
|
|
|
are computed. Since these structures are freed by sljit_free_compiler, the
|
|
|
|
addresses must be preserved by the user program elsewere. */
|
|
|
|
static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
|
|
|
|
static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
|
|
|
|
static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
|
|
|
|
|
|
|
|
/* Only the address is required to rewrite the code. */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr);
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant);
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* Miscellaneous utility functions */
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
#define SLJIT_MAJOR_VERSION 0
|
2014-07-05 11:53:30 +00:00
|
|
|
#define SLJIT_MINOR_VERSION 91
|
2014-07-04 22:28:24 +00:00
|
|
|
|
|
|
|
/* Get the human readable name of the platform. Can be useful on platforms
|
|
|
|
like ARM, where ARM and Thumb2 functions can be mixed, and
|
|
|
|
it is useful to know the type of the code generator. */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void);
|
|
|
|
|
|
|
|
/* Portable helper function to get an offset of a member. */
|
|
|
|
#define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
|
|
|
|
|
|
|
|
#if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
|
|
|
|
/* This global lock is useful to compile common functions. */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
|
|
|
|
|
|
|
|
/* The sljit_stack is a utiliy feature of sljit, which allocates a
|
|
|
|
writable memory region between base (inclusive) and limit (exclusive).
|
|
|
|
Both base and limit is a pointer, and base is always <= than limit.
|
|
|
|
This feature uses the "address space reserve" feature
|
|
|
|
of modern operating systems. Basically we don't need to allocate a
|
|
|
|
huge memory block in one step for the worst case, we can start with
|
|
|
|
a smaller chunk and extend it later. Since the address space is
|
|
|
|
reserved, the data never copied to other regions, thus it is safe
|
|
|
|
to store pointers here. */
|
|
|
|
|
|
|
|
/* Note: The base field is aligned to PAGE_SIZE bytes (usually 4k or more).
|
|
|
|
Note: stack growing should not happen in small steps: 4k, 16k or even
|
|
|
|
bigger growth is better.
|
|
|
|
Note: this structure may not be supported by all operating systems.
|
|
|
|
Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
|
|
|
|
is not defined. */
|
|
|
|
|
|
|
|
struct sljit_stack {
|
|
|
|
/* User data, anything can be stored here.
|
|
|
|
Starting with the same value as base. */
|
|
|
|
sljit_uw top;
|
|
|
|
/* These members are read only. */
|
|
|
|
sljit_uw base;
|
|
|
|
sljit_uw limit;
|
|
|
|
sljit_uw max_limit;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Returns NULL if unsuccessful.
|
|
|
|
Note: limit and max_limit contains the size for stack allocation
|
|
|
|
Note: the top field is initialized to base. */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit);
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack* stack);
|
|
|
|
|
|
|
|
/* Can be used to increase (allocate) or decrease (free) the memory area.
|
|
|
|
Returns with a non-zero value if unsuccessful. If new_limit is greater than
|
|
|
|
max_limit, it will fail. It is very easy to implement a stack data structure,
|
|
|
|
since the growth ratio can be added to the current limit, and sljit_stack_resize
|
|
|
|
will do all the necessary checks. The fields of the stack are not changed if
|
|
|
|
sljit_stack_resize fails. */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack* stack, sljit_uw new_limit);
|
|
|
|
|
|
|
|
#endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
|
|
|
|
|
|
|
|
#if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
|
|
|
|
|
|
|
|
/* Get the entry address of a given function. */
|
|
|
|
#define SLJIT_FUNC_OFFSET(func_name) ((sljit_sw)func_name)
|
|
|
|
|
|
|
|
#else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
|
|
|
|
|
|
|
|
/* All JIT related code should be placed in the same context (library, binary, etc.). */
|
|
|
|
|
|
|
|
#define SLJIT_FUNC_OFFSET(func_name) (*(sljit_sw*)(void*)func_name)
|
|
|
|
|
|
|
|
/* For powerpc64, the function pointers point to a context descriptor. */
|
|
|
|
struct sljit_function_context {
|
|
|
|
sljit_sw addr;
|
|
|
|
sljit_sw r2;
|
|
|
|
sljit_sw r11;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Fill the context arguments using the addr and the function.
|
|
|
|
If func_ptr is NULL, it will not be set to the address of context
|
|
|
|
If addr is NULL, the function address also comes from the func pointer. */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
|
|
|
|
|
|
|
|
#endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
|
|
|
|
|
|
|
|
#endif /* _SLJIT_LIR_H_ */
|