178 lines
7.1 KiB
Groff
178 lines
7.1 KiB
Groff
|
.TH PCREPERFORM 3 "09 January 2012" "PCRE 8.30"
|
||
|
.SH NAME
|
||
|
PCRE - Perl-compatible regular expressions
|
||
|
.SH "PCRE PERFORMANCE"
|
||
|
.rs
|
||
|
.sp
|
||
|
Two aspects of performance are discussed below: memory usage and processing
|
||
|
time. The way you express your pattern as a regular expression can affect both
|
||
|
of them.
|
||
|
.
|
||
|
.SH "COMPILED PATTERN MEMORY USAGE"
|
||
|
.rs
|
||
|
.sp
|
||
|
Patterns are compiled by PCRE into a reasonably efficient interpretive code, so
|
||
|
that most simple patterns do not use much memory. However, there is one case
|
||
|
where the memory usage of a compiled pattern can be unexpectedly large. If a
|
||
|
parenthesized subpattern has a quantifier with a minimum greater than 1 and/or
|
||
|
a limited maximum, the whole subpattern is repeated in the compiled code. For
|
||
|
example, the pattern
|
||
|
.sp
|
||
|
(abc|def){2,4}
|
||
|
.sp
|
||
|
is compiled as if it were
|
||
|
.sp
|
||
|
(abc|def)(abc|def)((abc|def)(abc|def)?)?
|
||
|
.sp
|
||
|
(Technical aside: It is done this way so that backtrack points within each of
|
||
|
the repetitions can be independently maintained.)
|
||
|
.P
|
||
|
For regular expressions whose quantifiers use only small numbers, this is not
|
||
|
usually a problem. However, if the numbers are large, and particularly if such
|
||
|
repetitions are nested, the memory usage can become an embarrassment. For
|
||
|
example, the very simple pattern
|
||
|
.sp
|
||
|
((ab){1,1000}c){1,3}
|
||
|
.sp
|
||
|
uses 51K bytes when compiled using the 8-bit library. When PCRE is compiled
|
||
|
with its default internal pointer size of two bytes, the size limit on a
|
||
|
compiled pattern is 64K data units, and this is reached with the above pattern
|
||
|
if the outer repetition is increased from 3 to 4. PCRE can be compiled to use
|
||
|
larger internal pointers and thus handle larger compiled patterns, but it is
|
||
|
better to try to rewrite your pattern to use less memory if you can.
|
||
|
.P
|
||
|
One way of reducing the memory usage for such patterns is to make use of PCRE's
|
||
|
.\" HTML <a href="pcrepattern.html#subpatternsassubroutines">
|
||
|
.\" </a>
|
||
|
"subroutine"
|
||
|
.\"
|
||
|
facility. Re-writing the above pattern as
|
||
|
.sp
|
||
|
((ab)(?2){0,999}c)(?1){0,2}
|
||
|
.sp
|
||
|
reduces the memory requirements to 18K, and indeed it remains under 20K even
|
||
|
with the outer repetition increased to 100. However, this pattern is not
|
||
|
exactly equivalent, because the "subroutine" calls are treated as
|
||
|
.\" HTML <a href="pcrepattern.html#atomicgroup">
|
||
|
.\" </a>
|
||
|
atomic groups
|
||
|
.\"
|
||
|
into which there can be no backtracking if there is a subsequent matching
|
||
|
failure. Therefore, PCRE cannot do this kind of rewriting automatically.
|
||
|
Furthermore, there is a noticeable loss of speed when executing the modified
|
||
|
pattern. Nevertheless, if the atomic grouping is not a problem and the loss of
|
||
|
speed is acceptable, this kind of rewriting will allow you to process patterns
|
||
|
that PCRE cannot otherwise handle.
|
||
|
.
|
||
|
.
|
||
|
.SH "STACK USAGE AT RUN TIME"
|
||
|
.rs
|
||
|
.sp
|
||
|
When \fBpcre_exec()\fP or \fBpcre[16|32]_exec()\fP is used for matching, certain
|
||
|
kinds of pattern can cause it to use large amounts of the process stack. In
|
||
|
some environments the default process stack is quite small, and if it runs out
|
||
|
the result is often SIGSEGV. This issue is probably the most frequently raised
|
||
|
problem with PCRE. Rewriting your pattern can often help. The
|
||
|
.\" HREF
|
||
|
\fBpcrestack\fP
|
||
|
.\"
|
||
|
documentation discusses this issue in detail.
|
||
|
.
|
||
|
.
|
||
|
.SH "PROCESSING TIME"
|
||
|
.rs
|
||
|
.sp
|
||
|
Certain items in regular expression patterns are processed more efficiently
|
||
|
than others. It is more efficient to use a character class like [aeiou] than a
|
||
|
set of single-character alternatives such as (a|e|i|o|u). In general, the
|
||
|
simplest construction that provides the required behaviour is usually the most
|
||
|
efficient. Jeffrey Friedl's book contains a lot of useful general discussion
|
||
|
about optimizing regular expressions for efficient performance. This document
|
||
|
contains a few observations about PCRE.
|
||
|
.P
|
||
|
Using Unicode character properties (the \ep, \eP, and \eX escapes) is slow,
|
||
|
because PCRE has to use a multi-stage table lookup whenever it needs a
|
||
|
character's property. If you can find an alternative pattern that does not use
|
||
|
character properties, it will probably be faster.
|
||
|
.P
|
||
|
By default, the escape sequences \eb, \ed, \es, and \ew, and the POSIX
|
||
|
character classes such as [:alpha:] do not use Unicode properties, partly for
|
||
|
backwards compatibility, and partly for performance reasons. However, you can
|
||
|
set PCRE_UCP if you want Unicode character properties to be used. This can
|
||
|
double the matching time for items such as \ed, when matched with
|
||
|
a traditional matching function; the performance loss is less with
|
||
|
a DFA matching function, and in both cases there is not much difference for
|
||
|
\eb.
|
||
|
.P
|
||
|
When a pattern begins with .* not in parentheses, or in parentheses that are
|
||
|
not the subject of a backreference, and the PCRE_DOTALL option is set, the
|
||
|
pattern is implicitly anchored by PCRE, since it can match only at the start of
|
||
|
a subject string. However, if PCRE_DOTALL is not set, PCRE cannot make this
|
||
|
optimization, because the . metacharacter does not then match a newline, and if
|
||
|
the subject string contains newlines, the pattern may match from the character
|
||
|
immediately following one of them instead of from the very start. For example,
|
||
|
the pattern
|
||
|
.sp
|
||
|
.*second
|
||
|
.sp
|
||
|
matches the subject "first\enand second" (where \en stands for a newline
|
||
|
character), with the match starting at the seventh character. In order to do
|
||
|
this, PCRE has to retry the match starting after every newline in the subject.
|
||
|
.P
|
||
|
If you are using such a pattern with subject strings that do not contain
|
||
|
newlines, the best performance is obtained by setting PCRE_DOTALL, or starting
|
||
|
the pattern with ^.* or ^.*? to indicate explicit anchoring. That saves PCRE
|
||
|
from having to scan along the subject looking for a newline to restart at.
|
||
|
.P
|
||
|
Beware of patterns that contain nested indefinite repeats. These can take a
|
||
|
long time to run when applied to a string that does not match. Consider the
|
||
|
pattern fragment
|
||
|
.sp
|
||
|
^(a+)*
|
||
|
.sp
|
||
|
This can match "aaaa" in 16 different ways, and this number increases very
|
||
|
rapidly as the string gets longer. (The * repeat can match 0, 1, 2, 3, or 4
|
||
|
times, and for each of those cases other than 0 or 4, the + repeats can match
|
||
|
different numbers of times.) When the remainder of the pattern is such that the
|
||
|
entire match is going to fail, PCRE has in principle to try every possible
|
||
|
variation, and this can take an extremely long time, even for relatively short
|
||
|
strings.
|
||
|
.P
|
||
|
An optimization catches some of the more simple cases such as
|
||
|
.sp
|
||
|
(a+)*b
|
||
|
.sp
|
||
|
where a literal character follows. Before embarking on the standard matching
|
||
|
procedure, PCRE checks that there is a "b" later in the subject string, and if
|
||
|
there is not, it fails the match immediately. However, when there is no
|
||
|
following literal this optimization cannot be used. You can see the difference
|
||
|
by comparing the behaviour of
|
||
|
.sp
|
||
|
(a+)*\ed
|
||
|
.sp
|
||
|
with the pattern above. The former gives a failure almost instantly when
|
||
|
applied to a whole line of "a" characters, whereas the latter takes an
|
||
|
appreciable time with strings longer than about 20 characters.
|
||
|
.P
|
||
|
In many cases, the solution to this kind of performance issue is to use an
|
||
|
atomic group or a possessive quantifier.
|
||
|
.
|
||
|
.
|
||
|
.SH AUTHOR
|
||
|
.rs
|
||
|
.sp
|
||
|
.nf
|
||
|
Philip Hazel
|
||
|
University Computing Service
|
||
|
Cambridge CB2 3QH, England.
|
||
|
.fi
|
||
|
.
|
||
|
.
|
||
|
.SH REVISION
|
||
|
.rs
|
||
|
.sp
|
||
|
.nf
|
||
|
Last updated: 25 August 2012
|
||
|
Copyright (c) 1997-2012 University of Cambridge.
|
||
|
.fi
|