new float.c from the Small SDK

This commit is contained in:
Pavol Marko 2004-02-08 11:08:54 +00:00
parent 8d3dbd803c
commit 6b506b5fa5

View File

@ -4,93 +4,378 @@
* Written by Greg Garner (gmg@artran.com) * Written by Greg Garner (gmg@artran.com)
* This file may be freely used. No warranties of any kind. * This file may be freely used. No warranties of any kind.
* *
* CHANGES -
* 2002-08-27: Basic conversion of source from C++ to C by Adam D. Moss
* <adam@gimp.org> <aspirin@icculus.org>
* 2003-08-29: Removal of the dynamic memory allocation and replacing two
* type conversion functions by macros, by Thiadmer Riemersma
* 2003-09-22: Moved the type conversion macros to AMX.H, and simplifications
* of some routines, by Thiadmer Riemersma
* 2003-11-24: A few more native functions (geometry), plus minor modifications,
* mostly to be compatible with dynamically loadable extension
* modules, by Thiadmer Riemersma
*/ */
#include <stdlib.h> /* for atof() */
#include <stdio.h> /* for NULL */
#include <assert.h>
#include <math.h> #include <math.h>
#include <stdlib.h> #include "amx.h"
#include <extdll.h>
#include <meta_api.h>
#include "amxmod.h"
inline cell FloatToCell(float fValue) { /*
return *(cell *)((void *)&fValue); #if defined __BORLANDC__
#pragma resource "amxFloat.res"
#endif
*/
#define PI 3.1415926535897932384626433832795
#if defined __BORLANDC__ || defined __WATCOMC__
#pragma argsused
#endif
/******************************************************************/
static cell AMX_NATIVE_CALL n_float(AMX *amx,cell *params)
{
/*
* params[0] = number of bytes
* params[1] = long value to convert to a float
*/
float fValue;
/* Convert to a float. Calls the compilers long to float conversion. */
fValue = (float) params[1];
/* Return the cell. */
return amx_ftoc(fValue);
} }
inline float CellToFloat(cell cellValue){ /******************************************************************/
return *(float *)((void *)&cellValue); #if defined __BORLANDC__ || defined __WATCOMC__
#pragma argsused
#endif
static cell AMX_NATIVE_CALL n_floatstr(AMX *amx,cell *params)
{
/*
* params[0] = number of bytes
* params[1] = virtual string address to convert to a float
*/
char szSource[60];
cell *pString;
float fNum;
int nLen;
/* They should have sent us 1 cell. */
assert(params[0]/sizeof(cell)==1);
/* Get the real address of the string. */
amx_GetAddr(amx,params[1],&pString);
/* Find out how long the string is in characters. */
amx_StrLen(pString, &nLen);
if (nLen == 0 || nLen >= sizeof szSource)
return 0;
/* Now convert the Small String into a C type null terminated string */
amx_GetString(szSource, pString);
/* Now convert this to a float. */
fNum = (float)atof(szSource);
return amx_ftoc(fNum);
} }
static cell _float(AMX *,cell *params){ #if defined __BORLANDC__ || defined __WATCOMC__
return FloatToCell((float)params[1]); #pragma argsused
#endif
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatmul(AMX *amx,cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1
* params[2] = float operand 2
*/
float fRes = amx_ctof(params[1]) * amx_ctof(params[2]);
return amx_ftoc(fRes);
} }
static cell _floatstr(AMX *amx,cell *params){ #if defined __BORLANDC__ || defined __WATCOMC__
int len; #pragma argsused
return FloatToCell((float)atof(get_amxstring(amx,params[1],0,len))); #endif
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatdiv(AMX *amx,cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float dividend (top)
* params[2] = float divisor (bottom)
*/
float fRes = amx_ctof(params[1]) / amx_ctof(params[2]);
return amx_ftoc(fRes);
} }
static cell _floatmul(AMX *,cell *params){ #if defined __BORLANDC__ || defined __WATCOMC__
return FloatToCell(CellToFloat(params[1]) * CellToFloat(params[2])); #pragma argsused
#endif
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatadd(AMX *amx,cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1
* params[2] = float operand 2
*/
float fRes = amx_ctof(params[1]) + amx_ctof(params[2]);
return amx_ftoc(fRes);
} }
static cell _floatdiv(AMX *,cell *params){ #if defined __BORLANDC__ || defined __WATCOMC__
return FloatToCell(CellToFloat(params[1]) / CellToFloat(params[2])); #pragma argsused
#endif
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatsub(AMX *amx,cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1
* params[2] = float operand 2
*/
float fRes = amx_ctof(params[1]) - amx_ctof(params[2]);
return amx_ftoc(fRes);
} }
static cell _floatadd(AMX *,cell *params){ #if defined __BORLANDC__ || defined __WATCOMC__
return FloatToCell(CellToFloat(params[1]) + CellToFloat(params[2])); #pragma argsused
#endif
/******************************************************************/
/* Return fractional part of float */
static cell AMX_NATIVE_CALL n_floatfract(AMX *amx,cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand
*/
float fA = amx_ctof(params[1]);
fA = fA - (float)(floor((double)fA));
return amx_ftoc(fA);
} }
static cell _floatsub(AMX *,cell *params){ #if defined __BORLANDC__ || defined __WATCOMC__
return FloatToCell(CellToFloat(params[1]) - CellToFloat(params[2])); #pragma argsused
#endif
/******************************************************************/
/* Return integer part of float, rounded */
static cell AMX_NATIVE_CALL n_floatround(AMX *amx,cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand
* params[2] = Type of rounding (long)
*/
float fA = amx_ctof(params[1]);
switch (params[2])
{
case 1: /* round downwards (truncate) */
fA = (float)(floor((double)fA));
break;
case 2: /* round upwards */
fA = (float)(ceil((double)fA));
break;
case 3: /* round towards zero */
if ( fA>=0.0 )
fA = (float)(floor((double)fA));
else
fA = (float)(ceil((double)fA));
break;
default: /* standard, round to nearest */
fA = (float)(floor((double)fA+.5));
break;
}
return (long)fA;
} }
static cell _floatfract(AMX *,cell *params){ #if defined __BORLANDC__ || defined __WATCOMC__
float fA = CellToFloat(params[1]); #pragma argsused
fA -= (float)(floor((double)fA)); #endif
return FloatToCell(fA); /******************************************************************/
static cell AMX_NATIVE_CALL n_floatcmp(AMX *amx,cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1
* params[2] = float operand 2
*/
float fA, fB;
fA = amx_ctof(params[1]);
fB = amx_ctof(params[2]);
if (fA == fB)
return 0;
else if (fA>fB)
return 1;
else
return -1;
} }
static cell _floatround(AMX *,cell *params){ /******************************************************************/
float fA = CellToFloat(params[1]); static cell AMX_NATIVE_CALL n_floatsqroot(AMX *amx,cell *params)
switch (params[2]) { {
case 1: /*
fA = (float)(floor((double)fA)); * params[0] = number of bytes
break; * params[1] = float operand
case 2: */
float fValue; float fA = amx_ctof(params[1]);
fValue = (float)(floor((double)fA)); fA = (float)sqrt(fA);
if ( (fA>=0) && ((fA-fValue)!=0) ) if (fA < 0)
fValue++; return amx_RaiseError(amx, AMX_ERR_DOMAIN);
fA = fValue; return amx_ftoc(fA);
break;
default:
fA = (float)(floor((double)fA+.5));
break;
}
return (long)fA;
} }
static cell _floatcmp(AMX *,cell *params){ #if defined __BORLANDC__ || defined __WATCOMC__
float fA = CellToFloat(params[1]); #pragma argsused
float fB = CellToFloat(params[2]); #endif
if (fA == fB) /******************************************************************/
return 0; static cell AMX_NATIVE_CALL n_floatpower(AMX *amx,cell *params)
else if (fA > fB) {
return 1; /*
else * params[0] = number of bytes
return -1; * params[1] = float operand 1 (base)
* params[2] = float operand 2 (exponent)
*/
float fA = amx_ctof(params[1]);
float fB = amx_ctof(params[2]);
fA = (float)pow(fA, fB);
return amx_ftoc(fA);
}
#if defined __BORLANDC__ || defined __WATCOMC__
#pragma argsused
#endif
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatlog(AMX *amx,cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1 (value)
* params[2] = float operand 2 (base)
*/
float fValue = amx_ctof(params[1]);
float fBase = amx_ctof(params[2]);
if (fValue <= 0.0 || fBase <= 0)
return amx_RaiseError(amx, AMX_ERR_DOMAIN);
if (fBase == 10.0) // ??? epsilon
fValue = (float)log10(fValue);
else
fValue = (float)(log(fValue) / log(fBase));
return amx_ftoc(fValue);
}
static float ToRadians(float angle, int radix)
{
switch (radix)
{
case 1: /* degrees, sexagesimal system (technically: degrees/minutes/seconds) */
return (float)(angle * PI / 180.0);
case 2: /* grades, centesimal system */
return (float)(angle * PI / 200.0);
default: /* assume already radian */
return angle;
} /* switch */
}
#if defined __BORLANDC__ || defined __WATCOMC__
#pragma argsused
#endif
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatsin(AMX *amx,cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1 (angle)
* params[2] = float operand 2 (radix)
*/
float fA = amx_ctof(params[1]);
fA = ToRadians(fA, params[2]);
fA = sinf(fA); // PM: using the float version of sin
return amx_ftoc(fA);
}
#if defined __BORLANDC__ || defined __WATCOMC__
#pragma argsused
#endif
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatcos(AMX *amx,cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1 (angle)
* params[2] = float operand 2 (radix)
*/
float fA = amx_ctof(params[1]);
fA = ToRadians(fA, params[2]);
fA = cosf(fA); // PM: using the float version of cos
return amx_ftoc(fA);
}
#if defined __BORLANDC__ || defined __WATCOMC__
#pragma argsused
#endif
/******************************************************************/
static cell AMX_NATIVE_CALL n_floattan(AMX *amx,cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1 (angle)
* params[2] = float operand 2 (radix)
*/
float fA = amx_ctof(params[1]);
fA = ToRadians(fA, params[2]);
fA = tanf(fA); // PM: using the float version of tan
return amx_ftoc(fA);
}
#if defined __BORLANDC__ || defined __WATCOMC__
#pragma argsused
#endif
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatabs(AMX *amx,cell *params)
{
float fA = amx_ctof(params[1]);
fA = (fA >= 0) ? fA : -fA;
return amx_ftoc(fA);
} }
AMX_NATIVE_INFO float_Natives[] = { AMX_NATIVE_INFO float_Natives[] = {
{ "float", _float }, { "float", n_float },
{ "floatstr", _floatstr }, { "floatstr", n_floatstr },
{ "floatmul", _floatmul }, { "floatmul", n_floatmul },
{ "floatdiv", _floatdiv }, { "floatdiv", n_floatdiv },
{ "floatadd", _floatadd }, { "floatadd", n_floatadd },
{ "floatsub", _floatsub }, { "floatsub", n_floatsub },
{ "floatfract", _floatfract}, { "floatfract", n_floatfract },
{ "floatround", _floatround}, { "floatround", n_floatround },
{ "floatcmp", _floatcmp}, { "floatcmp", n_floatcmp },
{ NULL, NULL } { "floatsqroot", n_floatsqroot},
{ "floatpower", n_floatpower },
{ "floatlog", n_floatlog },
{ "floatsin", n_floatsin },
{ "floatcos", n_floatcos },
{ "floattan", n_floattan },
{ "floatabs", n_floatabs },
{ NULL, NULL } /* terminator */
}; };
int AMXEXPORT amx_FloatInit(AMX *amx)
{
return amx_Register(amx,float_Natives,-1);
}
#if defined __BORLANDC__ || defined __WATCOMC__
#pragma argsused
#endif
int AMXEXPORT amx_FloatCleanup(AMX *amx)
{
return AMX_ERR_NONE;
}