diff --git a/amxmodx/sm_memtable.h b/amxmodx/sm_memtable.h
deleted file mode 100644
index d7e2d90d..00000000
--- a/amxmodx/sm_memtable.h
+++ /dev/null
@@ -1,170 +0,0 @@
-/**
- * vim: set ts=4 sw=4 tw=99 noet :
- * =============================================================================
- * SourceMod
- * Copyright (C) 2004-2008 AlliedModders LLC.  All rights reserved.
- * =============================================================================
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License, version 3.0, as published by the
- * Free Software Foundation.
- * 
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
- * details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program.  If not, see .
- *
- * As a special exception, AlliedModders LLC gives you permission to link the
- * code of this program (as well as its derivative works) to "Half-Life 2," the
- * "Source Engine," the "SourcePawn JIT," and any Game MODs that run on software
- * by the Valve Corporation.  You must obey the GNU General Public License in
- * all respects for all other code used.  Additionally, AlliedModders LLC grants
- * this exception to all derivative works.  AlliedModders LLC defines further
- * exceptions, found in LICENSE.txt (as of this writing, version JULY-31-2007),
- * or .
- *
- * Version: $Id$
- */
-
-#ifndef _INCLUDE_SOURCEMOD_CORE_STRINGTABLE_H_
-#define _INCLUDE_SOURCEMOD_CORE_STRINGTABLE_H_
-
-#include 
-#include 
-
-class BaseMemTable
-{
-public:
-	BaseMemTable(unsigned int init_size)
-	{
-		membase = (unsigned char *)malloc(init_size);
-		size = init_size;
-		tail = 0;
-	}
-	~BaseMemTable()
-	{
-		free(membase);
-		membase = NULL;
-	}
-public:
-	/**
-	 * Allocates 'size' bytes of memory.
-	 * Optionally outputs the address through 'addr'.
-	 * Returns an index >= 0 on success, < 0 on failure.
-	 */
-	int CreateMem(unsigned int addsize, void **addr)
-	{
-		int idx = (int)tail;
-
-		while (tail + addsize >= size) {
-			size *= 2;
-			membase = (unsigned char *)realloc(membase, size);
-		}
-
-		tail += addsize;
-		if (addr)
-			*addr = (void *)&membase[idx];
-
-		return idx;
-	}
-
-	/**
-	 * Given an index into the memory table, returns its address.
-	 * Returns NULL if invalid.
-	 */
-	void *GetAddress(int index)
-	{
-		if (index < 0 || (unsigned int)index >= tail)
-			return NULL;
-		return &membase[index];
-	}
-
-	/**
-	 * Scraps the memory table.  For caching purposes, the memory 
-	 * is not freed, however subsequent calls to CreateMem() will 
-	 * begin at the first index again.
-	 */
-	void Reset()
-	{
-		tail = 0;
-	}
-
-	inline unsigned int GetMemUsage()
-	{
-		return size;
-	}
-
-	inline unsigned int GetActualMemUsed()
-	{
-		return tail;
-	}
-
-private:
-	unsigned char *membase;
-	unsigned int size;
-	unsigned int tail;
-};
-
-class BaseStringTable
-{
-public:
-	BaseStringTable(unsigned int init_size) : m_table(init_size)
-	{
-	}
-public:
-	/** 
-	 * Adds a string to the string table and returns its index.
-	 */
-	int AddString(const char *string)
-	{
-		return AddString(string, strlen(string));
-	}
-
-	/** 
-	 * Adds a string to the string table and returns its index.
-	 */
-	int AddString(const char *string, size_t length)
-	{
-		size_t len = length + 1;
-		int idx;
-		char *addr;
-
-		idx = m_table.CreateMem(len, (void **)&addr);
-		memcpy(addr, string, length + 1);
-		return idx;
-	}
-
-	/**
-	 * Given an index into the string table, returns the associated string.
-	 */
-	inline const char *GetString(int str)
-	{
-		return (const char *)m_table.GetAddress(str);
-	}
-
-	/**
-	 * Scraps the string table. For caching purposes, the memory
-	 * is not freed, however subsequent calls to AddString() will 
-	 * begin at the first index again.
-	 */
-	void Reset()
-	{
-		m_table.Reset();
-	}
-
-	/**
-	 * Returns the parent BaseMemTable that this string table uses.
-	 */
-	inline BaseMemTable *GetMemTable()
-	{
-		return &m_table;
-	}
-private:
-	BaseMemTable m_table;
-};
-
-#endif //_INCLUDE_SOURCEMOD_CORE_STRINGTABLE_H_
-
diff --git a/amxmodx/sm_trie_tpl.h b/amxmodx/sm_trie_tpl.h
deleted file mode 100644
index d7c81fbd..00000000
--- a/amxmodx/sm_trie_tpl.h
+++ /dev/null
@@ -1,1102 +0,0 @@
-/**
- * vim: set ts=4 :
- * =============================================================================
- * SourceMod
- * Copyright (C) 2004-2008 AlliedModders LLC.  All rights reserved.
- * =============================================================================
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License, version 3.0, as published by the
- * Free Software Foundation.
- * 
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
- * details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program.  If not, see .
- *
- * As a special exception, AlliedModders LLC gives you permission to link the
- * code of this program (as well as its derivative works) to "Half-Life 2," the
- * "Source Engine," the "SourcePawn JIT," and any Game MODs that run on software
- * by the Valve Corporation.  You must obey the GNU General Public License in
- * all respects for all other code used.  Additionally, AlliedModders LLC grants
- * this exception to all derivative works.  AlliedModders LLC defines further
- * exceptions, found in LICENSE.txt (as of this writing, version JULY-31-2007),
- * or .
- *
- * Version: $Id$
- */
-
-#ifndef _INCLUDE_SOURCEMOD_TEMPLATED_TRIE_H_
-#define _INCLUDE_SOURCEMOD_TEMPLATED_TRIE_H_
-
-#include 
-#include 
-#include 
-#include 
-
-enum NodeType
-{
-	Node_Unused = 0,		/* Node is not being used (sparse) */
-	Node_Arc,				/* Node is part of an arc and does not terminate */
-	Node_Term,				/* Node is a terminator */
-};
-
-/**
- * @brief Trie class for storing key/value pairs, based on double array tries.
- * @file sm_trie_tpl.h
- *
- * For full works cited and implementation overview, there is a big comment 
- * block at the bottom of this file.
- */
-
-template 
-class KTrie
-{
-	class KTrieNode;
-public:
-	/**
-	 * @brief Clears all set objects in the trie.
-	 */
-	void clear()
-	{
-		run_destructors();
-		internal_clear();
-	}
-
-	/**
-	 * @brief Removes a key from the trie.
-	 *
-	 * @param key		Key to remove.
-	 * @return			True on success, false if key was never set.
-	 */
-	bool remove(const char *key)
-	{
-		KTrieNode *node = internal_retrieve(key);
-		if (!node || !node->valset)
-		{
-			return false;
-		}
-
-		node->value.~K();
-		node->valset = false;
-
-		m_numElements--;
-
-		return true;
-	}
-
-	/**
-	 * @brief Retrieves a pointer to the object stored at a given key.
-	 *
-	 * @param key		Key to retrieve.
-	 * @return			Pointer to object, or NULL if key was not found or not set.
-	 */
-	K * retrieve(const char *key)
-	{
-		KTrieNode *node = internal_retrieve(key);
-		if (!node || !node->valset)
-		{
-			return NULL;
-		}
-		return &node->value;
-	}
-
-	/**
-	 * @brief Inserts or updates the object stored at a key.
-	 *
-	 * @param key		Key to update or insert.
-	 * @param obj		Object to store at the key.
-	 * @return			True on success, false on failure.
-	 */
-	bool replace(const char *key, const K & obj)
-	{
-		KTrieNode *prev_node = internal_retrieve(key);
-		if (!prev_node)
-		{
-			return insert(key, obj);
-		}
-
-		if (prev_node->valset)
-		{
-			prev_node->value.~K();
-		}
-
-		new (&prev_node->value) K(obj);
-
-		return true;
-	}
-
-	/**
-	 * @brief Inserts an object at a key.
-	 *
-	 * @param key		Key to insert at.
-	 * @param obj		Object to store at the key.
-	 * @return			True on success, false if the key is already set or 
-	 *					insertion otherwise failed.
-	 */
-	bool insert(const char *key, const K & obj) 
-	{
-		unsigned int lastidx = 1;		/* the last node index */
-		unsigned int curidx;			/* current node index */
-		const char *keyptr = key;		/* input stream at current token */
-		KTrieNode *node = NULL;			/* current node being processed */
-		//KTrieNode *basenode = NULL;		/* current base node being processed */
-		unsigned int q;					/* temporary var for x_check results */
-		unsigned int curoffs;			/* current offset */
-
-		/**
-		 * Empty strings are a special case, since there are no productions.  We could 
-		 * probably rework it to use BASE[0] but this hack is easier.
-		 */
-		if (*key == '\0')
-		{
-			if (m_empty != NULL && m_empty->valset)
-			{
-				return false;
-			}
-
-			if (m_empty == NULL)
-			{
-				m_empty = (KTrieNode *)malloc(sizeof(KTrieNode));
-			}
-
-			m_empty->valset = true;
-			new (&m_empty->value) K(obj);
-
-			m_numElements++;
-
-			return true;
-		}
-
-		/* Start traversing at the root node (1) */
-		do
-		{
-			/* Find where the next character is, then advance */
-			curidx = m_base[lastidx].idx;
-			//basenode = &m_base[curidx];
-			curoffs = charval(*keyptr);
-			curidx += curoffs;
-			node = &m_base[curidx];
-			keyptr++;
-
-			/* Check if this slot is supposed to be empty.  If so, we need to handle CASES 1/2:
-			 * Insertion without collisions
-			 */
-			if ( (curidx > m_baseSize) || (node->mode == Node_Unused) )
-			{
-				if (curidx > m_baseSize)
-				{
-					if (!grow())
-					{
-						return false;
-					}
-					node = &m_base[curidx];
-				}
-				node->parent = lastidx;
-				if (*keyptr == '\0')
-				{
-					node->mode = Node_Arc;
-				}
-				else
-				{
-					node->idx = x_addstring(keyptr);
-					node->mode = Node_Term;
-				}
-				node->valset = true;
-				new (&node->value) K(obj);
-
-				m_numElements++;
-
-				return true;
-			}
-			else if (node->parent != lastidx)
-			{
-				/* Collision! We have to split up the tree here.  CASE 4:
-				 * Insertion when a new word is inserted with a collision.
-				 * NOTE: This is the hardest case to handle.  All below examples are based on:
-				 * BACHELOR, BADGE, inserting BABY.
-				 * The problematic production here is A -> B, where B is already being used.
-			     *
-				 * This process has to rotate one half of the 'A' arc.  We generate two lists:
-				 *  Outgoing Arcs - Anything leaving this 'A'
-				 *  Incoming Arcs - Anything going to this 'A'
-				 * Whichever list is smaller will be moved.  Note that this works because the intersection
-				 * affects both arc chains, and moving one will make the slot available to either.
-				 */
-				KTrieNode *cur;
-
-				/* Find every node arcing from the last node.
-				 * I.e. for BACHELOR, BADGE, BABY,
-				 * The arcs leaving A will be C and D, but our current node is B -> *.
-				 * Thus, we use the last index (A) to find the base for arcs leaving A.
-				 */
-				unsigned int outgoing_base = m_base[lastidx].idx;
-				unsigned int outgoing_list[256];
-				unsigned int outgoing_count = 0;	/* count the current index here */
-				cur = &m_base[outgoing_base] + 1;
-				unsigned int outgoing_limit = 255;
-
-				if (outgoing_base + outgoing_limit > m_baseSize)
-				{
-					outgoing_limit = m_baseSize - outgoing_base;
-				}
-
-				for (unsigned int i=1; i<=outgoing_limit; i++,cur++)
-				{
-					if (cur->mode == Node_Unused || cur->parent != lastidx)
-					{
-						continue;
-					}
-					outgoing_list[outgoing_count++] = i;
-				}
-				outgoing_list[outgoing_count++] = curidx - outgoing_base;
-
-				/* Now we need to find all the arcs leaving our parent...
-				 * Note: the inconsistency is the base of our parent.  
-				 */
-				assert(m_base[node->parent].mode == Node_Arc);
-				unsigned int incoming_list[256];
-				unsigned int incoming_base = m_base[node->parent].idx;
-				unsigned int incoming_count = 0;
-				unsigned int incoming_limit = 255;
-				cur = &m_base[incoming_base] + 1;
-
-				if (incoming_base + incoming_limit > m_baseSize)
-				{
-					incoming_limit = m_baseSize - incoming_base;
-				}
-
-				assert(incoming_limit > 0 && incoming_limit <= 255);
-
-				for (unsigned int i=1; i<=incoming_limit; i++,cur++)
-				{
-					if (cur->mode == Node_Arc || cur->mode == Node_Term)
-					{
-						if (cur->parent == node->parent)
-						{
-							incoming_list[incoming_count++] = i;
-						}
-					}
-				}
-
-				if (incoming_count < outgoing_count + 1)
-				{
-					unsigned int q = x_check_multi(incoming_list, incoming_count);
-
-					node = &m_base[curidx];
-
-					/* If we're incoming, we need to modify our parent */
-					m_base[node->parent].idx = q;
-
-					/* For each node in the "to move" list,
-					 * Relocate the node's info to the new position.
-					 */
-					unsigned int idx, newidx, oldidx;
-					for (unsigned int i=0; i 255)
-							{
-								outgoing_limit = 255;
-							}
-							for (unsigned int j=1; j<=outgoing_limit; j++, check_base++)
-							{
-								if (check_base->parent == oldidx)
-								{
-									check_base->parent = newidx;
-								}
-							}
-						}
-					}
-				}
-				else
-				{
-					unsigned int q = x_check_multi(outgoing_list, outgoing_count);
-
-					node = &m_base[curidx];
-
-					/* If we're outgoing, we need to modify our own base */
-					m_base[lastidx].idx = q;
-
-					/* Take the last index (curidx) out of the list.  Technically we are not moving this,
-					 * since it's already being used by something else.  
-					 */
-					outgoing_count--;
-
-					/* For each node in the "to move" list,
-					 * Relocate the node's info to the new position.
-					 */
-					unsigned int idx, newidx, oldidx;
-					for (unsigned int i=0; i 255)
-							{
-								outgoing_limit = 255;
-							}
-							for (unsigned int j=1; j<=outgoing_limit; j++, check_base++)
-							{
-								if (check_base->parent == oldidx)
-								{
-									check_base->parent = newidx;
-								}
-							}
-						}
-					}
-
-					/* Take the invisible node and use it as our new node */
-					node = &m_base[q + outgoing_list[outgoing_count]];
-				}
-
-				/* We're finally done! */
-				node->parent = lastidx;
-				if (*keyptr == '\0')
-				{
-					node->mode = Node_Arc;
-				}
-				else
-				{
-					node->idx = x_addstring(keyptr);
-					node->mode = Node_Term;
-				}
-				node->valset = true;
-				new (&node->value) K(obj);
-
-				m_numElements++;
-
-				return true;
-			}
-			else
-			{
-				/* See what's in the next node - special case if terminator! */
-				if (node->mode == Node_Term)
-				{
-					/* If we're a terminator, we need to handle CASE 3:
-					 * Insertion when a terminating collision occurs
-					 */
-					char *term = &m_stringtab[node->idx];
-					/* Do an initial browsing to make sure they're not the same string */
-					if (strcmp(keyptr, term) == 0)
-					{
-						if (!node->valset)
-						{
-							node->valset = true;
-							new (&node->value) K(obj);
-							m_numElements++;
-							return true;
-						}
-						/* Same string.  We can't insert. */
-						return false;
-					}
-					/* For each matching character pair, we need to disband the terminator.
-					 * This splits the similar prefix into a single arc path.
-					 * First, save the old values so we can move them to a new node.
-					 * Next, for each loop:
-					 *  Take the current (invalid) node, and point it to the next arc base.
-					 *  Set the current node to the node at the next arc.
-					 */
-					K oldvalue;
-					bool oldvalset = node->valset;
-					if (oldvalset)
-					{
-						oldvalue = node->value;
-					}
-					if (*term == *keyptr)
-					{
-						while (*term == *keyptr)
-						{
-							/* Find the next free slot in the check array.
-							 * This is the "vector base" essentially
-							 */
-							q = x_check(*term);
-							node = &m_base[curidx];
-							/* Point the node to the next new base */
-							node->idx = q;
-							node->mode = Node_Arc;
-							if (node->valset == true)
-							{
-								node->value.~K();
-								node->valset = false;
-							}
-							/* Advance the input stream and local variables */
-							lastidx = curidx;
-							curidx = q + charval(*term);
-							node = &m_base[curidx];
-							/* Make sure the new current node has its parent set. */
-							node->parent = lastidx;
-							node->mode = Node_Arc;	/* Just in case we run x_check again */
-							*term = '\0';	/* Unmark the string table here */
-							term++;
-							keyptr++;
-						}
-					}
-					else if (node->valset)
-					{
-						node->valset = false;
-						node->value.~K();
-					}
-					/* We're done inserting new pairs.  If one of them is exhausted,
-					 * we take special shortcuts.
-					 */
-					if (*term == '\0')				//EX: BADGERHOUSE added over B -> ADGER.  
-					{
-						/* First backpatch the current node - it ends the newly split terminator.
-						 * In the example, this would mean the node is the production from R -> ?
-						 * This node ends the old BADGER, so we set it here.
-						 */
-						node->valset = oldvalset;
-						if (node->valset)
-						{
-							new (&node->value) K(oldvalue);
-						}
-
-						/* The terminator was split up, but pieces of keyptr remain.
-						 * We need to generate a new production, in this example, R -> H,
-						 * with H being a terminator to OUSE.  Thus we get:
-						 * B,A,D,G,E,R*,H*->OUSE (* = value set).
-						 * NOTE: parent was last set at the end of the while loop.
-						 */
-						/* Get the new base and apply re-basing */
-						q = x_check(*keyptr);
-						node = &m_base[curidx];
-
-						node->idx = q;
-						node->mode = Node_Arc;
-						lastidx = curidx;
-						/* Finish the final node */
-						curidx = q + charval(*keyptr);
-						node = &m_base[curidx];
-						keyptr++;
-						/* Optimize - don't add to string table if there's nothing more to eat */
-						if (*keyptr == '\0')
-						{
-							node->mode = Node_Arc;
-						}
-						else
-						{
-							node->idx = x_addstring(keyptr);
-							node->mode = Node_Term;
-						}
-						node->parent = lastidx;
-						node->valset = true;
-						new (&node->value) K(obj);
-					}
-					else if (*keyptr == '\0')
-					{	//EX: BADGER added over B -> ADGERHOUSE
-						/* First backpatch the current node - it ends newly split input string.
-						 * This is the exact opposite of the above procedure.
-						 */
-						node->valset = true;
-						new (&node->value) K(obj);
-
-						/* Get the new base and apply re-basing */
-						q = x_check(*term);
-						node = &m_base[curidx];
-
-						node->idx = q;
-						node->mode = Node_Arc;
-						lastidx = curidx;
-						/* Finish the final node */
-						curidx = q + charval(*term);
-						node = &m_base[curidx];
-						term++;
-						/* Optimize - don't add to string table if there's nothing more to eat */
-						if (*term == '\0')
-						{
-							node->mode = Node_Arc;
-						}
-						else
-						{
-							node->idx = (term - m_stringtab); /* Already in the string table! */
-							node->mode = Node_Term;
-						}
-						node->parent = lastidx;
-						node->valset = oldvalset;
-						if (node->valset)
-						{
-							new (&node->value) K(oldvalue);
-						}
-					}
-					else
-					{
-						/* Finally, we have to create two new nodes instead of just one. */
-						node->mode = Node_Arc;
-
-						/* Get the new base and apply re-basing */
-						q = x_check2(*keyptr, *term);
-						node = &m_base[curidx];
-
-						node->idx = q;
-						lastidx = curidx;
-
-						/* Re-create the old terminated node */
-						curidx = q + charval(*term);
-						node = &m_base[curidx];
-						term++;
-						node->valset = oldvalset;
-						if (node->valset)
-						{
-							new (&node->value) K(oldvalue);
-						}
-						node->parent = lastidx;
-						if (*term == '\0')
-						{
-							node->mode = Node_Arc;
-						}
-						else
-						{
-							node->mode = Node_Term;
-							node->idx = (term - m_stringtab); /* Already in the string table! */
-						}
-
-						/* Create the new keyed input node */
-						curidx = q + charval(*keyptr);
-						node = &m_base[curidx];
-						keyptr++;
-						node->valset = true;
-						new (&node->value) K(obj);
-						node->parent = lastidx;
-						if (*keyptr == '\0')
-						{
-							node->mode = Node_Arc;
-						}
-						else
-						{
-							node->mode = Node_Term;
-							node->idx = x_addstring(keyptr);
-						}
-					}
-
-					m_numElements++;
-
-					/* Phew! */
-					return true;
-				}
-				else
-				{
-					assert(node->mode == Node_Arc);
-				}
-			}
-			lastidx = curidx;
-		} while (*keyptr != '\0');
-
-		assert(node);
-
-		/* If we've exhausted the string and we have a valid reached node,
-		 * the production rule already existed.  Make sure it's valid to set first.
-		 */
-
-		/* We have to be an Arc.  If the last result was anything else, we would have returned a new 
-		 * production earlier.
-		 */
-		assert(node->mode == Node_Arc);
-
-		if (!node->valset)
-		{
-			node->valset = true;
-			new (&node->value) K(obj);
-			m_numElements++;
-			return true;
-		}
-
-		return false;
-	}
-
-	/** 
-	 * @brief Iterates over the trie returning all known values.  
-	 * 
-	 * Note: This function is for debugging.  Do not use it as a 
-	 * production iterator since it's inefficient.  Iteration is 
-	 * guaranteed to be sorted ascendingly.
-	 *
-	 * The callback function takes:
-	 *  (KTrie)			- Pointer to this Trie
-	 *  (const char *)	- String containing key name.
-	 *  (K &)			- By-reference object at the key.
-	 *  (data)			- User pointer.
-	 *
-	 * @param buffer			Buffer to use as a key name cache.
-	 * @param maxlength			Maximum length of the key name buffer.
-	 * @param data				User pointer for passing to the iterator.
-	 * @param func				Iterator callback function.
-	 */
-	void bad_iterator(char *buffer, 
-		size_t maxlength, 
-		void *data,
-		void (*func)(KTrie *, const char *, K & obj, void *data))
-	{
-		bad_iterator_r(buffer, maxlength, 0, data, func, 1);
-	}
-
-private:
-	void bad_iterator_r(char *buffer, 
-		size_t maxlength, 
-		size_t buf_pos,
-		void *data,
-		void (*func)(KTrie *, const char *, K & obj, void *data),
-		unsigned int root)
-	{
-		char *term;
-		unsigned int idx, limit, start;
-
-		limit = 255;
-		start = m_base[root].idx;
-
-		/* Bound our limits */
-		if (start + limit > m_baseSize)
-		{
-			limit = m_baseSize - start;
-		}
-
-		/* Search for strings */
-		for (unsigned int i = 1; i <= limit; i++)
-		{
-			idx = start + i;
-			if (m_base[idx].mode == Node_Unused
-				|| m_base[idx].parent != root)
-			{
-				continue;
-			}
-
-			if (m_base[idx].mode == Node_Arc)
-			{
-				if (buf_pos < maxlength - 1)
-				{
-					buffer[buf_pos++] = (char)i;
-				}
-
-				if (m_base[idx].valset)
-				{
-					buffer[buf_pos] = '\0';
-					func(this, buffer, m_base[idx].value, data);
-				}
-
-				bad_iterator_r(buffer,
-					maxlength,
-					buf_pos,
-					data,
-					func,
-					idx);
-
-				buf_pos--;
-			}
-			else if (m_base[idx].mode == Node_Term 
-					 && m_base[idx].valset == true)
-			{
-				size_t save_buf_pos;
-
-				save_buf_pos = buf_pos;
-				if (buf_pos < maxlength - 1)
-				{
-					buffer[buf_pos++] = (char)i;
-				}
-				if (buf_pos < maxlength - 1)
-				{
-					size_t destlen, j;
-
-					term = &m_stringtab[m_base[idx].idx];
-					destlen = strlen(term);
-					for (j = 0; 
-						 j < destlen && j + buf_pos < maxlength - 1;
-						 j++)
-					{
-						buffer[buf_pos + j] = term[j];
-					}
-					buf_pos += j;
-				}
-				buffer[buf_pos] = '\0';
-
-				func(this, buffer, m_base[idx].value, data);
-				
-				buf_pos = save_buf_pos;
-			}
-		}
-	}
-public:
-	KTrie()
-	{
-		m_base = (KTrieNode *)malloc(sizeof(KTrieNode) * (256 + 1));
-		m_stringtab = (char *)malloc(sizeof(char) * 256);
-		m_baseSize = 256;
-		m_stSize = 256;
-		m_empty = NULL;
-		m_numElements = 0;
-
-		internal_clear();
-	}
-	~KTrie()
-	{
-		if (m_empty != NULL && m_empty->valset)
-		{
-			m_empty->value.~K();
-			m_empty->valset = false;
-		}
-		free(m_empty);
-		run_destructors();
-		free(m_base);
-		free(m_stringtab);
-	}
-	void run_destructor(void (*dtor)(K * ptr))
-	{
-		for (size_t i = 0; i <= m_baseSize; i++)
-		{
-			if (m_base[i].valset)
-			{
-				dtor(&m_base[i].value);
-				m_base[i].valset = false;
-			}
-		}
-	}
-private:
-	class KTrieNode
-	{
-		friend class KTrie;
-	private:
-		/**
-		 * For Node_Arc, this index stores the 'base' offset to the next arc chain.
-		 *   I.e. to jump from this arc to character C, it will be at base[idx+C].
-		 * For Node_Term, this is an index into the string table.
-		 */
-		unsigned int idx;	
-
-		/**
-		 * This contains the prior arc that we must have come from.
-		 * For example, if arc 63 has a base jump of index 12, and we want to see if
-		 * there is a valid character C, the parent of 12+C must be 63.
-		 */
-		unsigned int parent;
-		K value;				/* Value associated with this node */
-		NodeType mode;			/* Current usage type of the node */
-		bool valset;			/* Whether or not a value is set */
-	};
-private:
-	KTrieNode *internal_retrieve(const char *key)
-	{
-		unsigned int lastidx = 1;		/* the last node index */
-		unsigned int curidx;			/* current node index */
-		const char *keyptr = key;		/* input stream at current token */
-		KTrieNode *node = NULL;			/* current node being processed */
-
-		if (!*key)
-		{
-			return m_empty;
-		}
-
-		/* Start traversing at the root node */
-		do
-		{
-			/* Find where the next character is, then advance */
-			curidx = m_base[lastidx].idx;
-			node = &m_base[curidx];
-			curidx += charval(*keyptr);
-			node = &m_base[curidx];
-			keyptr++;
-
-			/* Check if this slot is supposed to be empty or is a collision */
-			if ((curidx > m_baseSize) || node->mode == Node_Unused || node->parent != lastidx)
-			{
-				return NULL;
-			}
-			else if (node->mode == Node_Term)
-			{
-				char *term = &m_stringtab[node->idx];
-				if (strcmp(keyptr, term) == 0)
-				{
-					break;
-				}
-				else
-				{
-					return NULL;
-				}
-			}
-			lastidx = curidx;
-		} while (*keyptr != '\0');
-
-		return node;
-	}
-	bool grow()
-	{
-		/* The current # of nodes in the tree is trie->baseSize + 1 */
-		unsigned int cur_size = m_baseSize;
-		unsigned int new_size = cur_size * 2;
-
-		KTrieNode *new_base = (KTrieNode *)malloc((new_size + 1) * sizeof(KTrieNode));
-		if (!new_base)
-		{
-			return false;
-		}
-
-		memcpy(new_base, m_base, sizeof(KTrieNode) * (m_baseSize + 1));
-		memset(&new_base[cur_size + 1], 0, (new_size - cur_size) * sizeof(KTrieNode));
-
-		for (size_t i = 0; i <= m_baseSize; i++)
-		{
-			if (m_base[i].valset)
-			{
-				/* Placement construct+copy the object, then placement destroy the old. */
-				new (&new_base[i].value) K(m_base[i].value);
-				m_base[i].value.~K();
-			}
-		}
-
-		free(m_base);
-		m_base = new_base;
-		m_baseSize = new_size;
-
-		return true;
-	}
-	inline unsigned char charval(char c)
-	{
-		return (unsigned char)c;
-	}
-	void internal_clear()
-	{
-		m_tail = 0;
-		m_numElements = 0;
-
-		memset(m_base, 0, sizeof(KTrieNode) * (m_baseSize + 1));
-		memset(m_stringtab, 0, sizeof(char) * m_stSize);
-
-		/* Sentinel root node */
-		m_base[1].idx = 1;
-		m_base[1].mode = Node_Arc;
-		m_base[1].parent = 1;
-	}
-	void run_destructors()
-	{
-		for (size_t i = 0; i <= m_baseSize; i++)
-		{
-			if (m_base[i].valset)
-			{
-				m_base[i].value.~K();
-			}
-		}
-	}
-	unsigned int x_addstring(const char *ptr)
-	{
-		size_t len = strlen(ptr) + 1;
-
-		if (m_tail + len >= m_stSize)
-		{		
-			while (m_tail + len >= m_stSize)
-			{
-				m_stSize *= 2;
-			}
-			m_stringtab = (char *)realloc(m_stringtab,m_stSize);
-		}
-
-		unsigned int tail = m_tail;
-		strcpy(&m_stringtab[tail], ptr);
-		m_tail += len;
-
-		return tail;
-	}
-	unsigned int x_check(char c, unsigned int start=1)
-	{
-		unsigned char _c = charval(c);
-		unsigned int to_check = m_baseSize - _c;
-		for (unsigned int i=start; i<=to_check; i++)
-		{
-			if (m_base[i+_c].mode == Node_Unused)
-			{
-				return i;
-			}
-		}
-
-		grow();
-
-		return x_check(c, to_check+1);
-	}
-	unsigned int x_check2(char c1, char c2, unsigned int start=1)
-	{
-		unsigned char _c1 = charval(c1);
-		unsigned char _c2 = charval(c2);
-		unsigned int to_check = m_baseSize - (_c1 > _c2 ? _c1 : _c2);
-		for (unsigned int i=start; i<=to_check; i++)
-		{
-			if (m_base[i+_c1].mode == Node_Unused
-				&& m_base[i+_c2].mode == Node_Unused)
-			{
-				return i;
-			}
-		}
-
-		grow();
-
-		return x_check2(c1, c2, to_check+1);
-	}
-	unsigned int x_check_multi(
-		unsigned int offsets[], 
-		unsigned int count,
-		unsigned int start=1)
-	{
-		KTrieNode *cur;
-		unsigned int to_check = m_baseSize;
-		unsigned int highest = 0;
-
-		for (unsigned int i=0; i highest)
-			{
-				highest = offsets[i];
-			}
-		}
-
-		to_check -= highest;
-
-		for (unsigned int i=start; i<=to_check; i++)
-		{
-			bool okay = true;
-			for (unsigned int j=0; jmode != Node_Unused)
-				{
-					okay = false;
-					break;
-				}
-			}
-			if (okay)
-			{
-				return i;
-			}
-		}
-
-		grow();
-
-		return x_check_multi(offsets, count, to_check+1);
-	}
-public:
-	size_t mem_usage()
-	{
-		return (sizeof(KTrieNode) * (m_baseSize))
-			+ m_stSize
-			+ sizeof(KTrieNode);
-	}
-	size_t size()
-	{
-		return m_numElements;
-	}
-private:
-	KTrieNode *m_base;			/* Base array for the sparse tables */
-	KTrieNode *m_empty;			/* Special case for empty strings */
-	char *m_stringtab;			/* String table pointer */
-	unsigned int m_baseSize;	/* Size of the base array, in members */
-	unsigned int m_stSize;		/* Size of the string table, in bytes */
-	unsigned int m_tail;		/* Current unused offset into the string table */
-	size_t m_numElements;		/* Number of elements in use */
-};
-
-/**
- * Double Array Trie algorithm, based on:
- * An Efficient Implementation of Trie Structures, by
- *  Jun-ichi Aoe and Katsushi Maromoto, and Takashi Sato
- * from Software - Practice and Experience, Vol. 22(9), 695-721 (September 1992)
- *
- *  A Trie is a simple data structure which stores strings as DFAs, with each 
- * transition state being a string entry.  For example, observe the following strings:
- *
- * BAILOPAN, BAT, BACON, BACK
- *  These transition as the follow production rules:
- *  B -> ...                  B
- *       A -> ...             BA
- *            I -> ...        BAI
- *                 LOPAN      BAILOPAN
- *            T -> ...        BAT
- *            C ->            BAC
- *                 O -> ...   BACO
- *                      N     BACON
- *                 K          BACK
- *
- *  The standard implementation for this - using lists - gives a slow linear lookup, somewhere between
- * O(N+M) or O(log n).  A faster implementation is proposed in the paper above, which is based on compacting
- * the transition states into two arrays.  In the paper's implementation, two arrays are used, and thus it is
- * called the "Double Array" algorithm.  However, the CHECK array's size is maintained the same as BASE, 
- * so they can be combined into one structure.  The array seems complex at first, but is very simple: it is a
- * tree structure flattened out into a single vector.  I am calling this implementation the Flat Array Trie.
- *
- *  BASE[] is an array where each member is a node in the Trie.  The node can either be UNUSED (empty), an ARC
- * (containing an offset to the next set of ARCs), or a TERMINATOR (contains the rest of a string).
- * Each node has an index which must be interpreted based on the node type.  If the node is a TERMINATOR, then the
- * index is an index into a string table, to find the rest of the string.  
- *  If the node is an ARC, the index is another index into BASE.  For each possible token that can follow the
- * current token, the value of those tokens can be added to the index given in the ARC.  Thus, given a current
- * position and the next desired token, the current arc will jump to another arc which can contain either:
- *   1) An invalid production (collision, no entry exists)
- *   2) An empty production (no entry exists)
- *   3) Another arc label (the string ends here or continues into more productions)
- *   4) A TERMINATOR (the string ends here and contains an unused set of productions)
- * 
- *  So, given current offset N (starting at N=1), jumping to token C means the next offset will be:
- *      offs = BASE[n] + C
- *  Thus, the next node will be at:
- *      BASE[BASE[n] + C]
- * 
- *  This allows each ARC to specify the base offset for any of its ARC children, like a tree.  Each node specifies
- * its parent ARC -- so if an invalid offset is specified, the parent will not match, and thus no such derived 
- * string exists.
- *
- *  This means that arrays can be laid out "sparsely," maximizing their usage.  Note that N need not be related to
- * the range of tokens (1-256).  I.e., a base index does not have to be at 1, 256, 512, et cetera.  This is because
- * insertion comes with a small deal of complexity.  To insert a new set of tokens T, the algorithm finds a new 
- * BASE index N such that BASE[N+T[i]] is unused for each T[i].  Thus, indirection is not necessarily linear; 
- * traversing a chain of ARC nodes can _and will_ jump around BASE.
- *
- *  Of course, given this level of flexibility in the array organization, there are collisions.  This is largely 
- * where insertions become slow, as the old chain must be relocated before the new one is used.  Relocation means 
- * finding one or more new base indexes, and this means traversing BASE until an acceptable index is found, such 
- * that each offset is unused (see description in previous paragraph).
- *
- *  However, it is not insertion time we are concerned about.  The "trie" name comes from reTRIEval.  We are only
- * concerned with lookup and deletion.  Both lookup and deletion are O(k), where k is relative to the length of the 
- * input string.  Note that it is best case O(1) and worst case O(k).  Deleting the entire trie is always O(1).
- */
-
-#endif //_INCLUDE_SOURCEMOD_TEMPLATED_TRIE_H_
diff --git a/amxmodx/trie_natives.cpp b/amxmodx/trie_natives.cpp
index 3782388a..90b4752a 100644
--- a/amxmodx/trie_natives.cpp
+++ b/amxmodx/trie_natives.cpp
@@ -3,7 +3,6 @@
 #include 
 
 #include "amxmodx.h"
-#include "sm_trie_tpl.h"
 #include "trie_natives.h"
 
 using namespace SourceMod;
diff --git a/amxmodx/trie_natives.h b/amxmodx/trie_natives.h
index 2d192363..abefe7a1 100644
--- a/amxmodx/trie_natives.h
+++ b/amxmodx/trie_natives.h
@@ -2,8 +2,8 @@
 #define _TRIE_NATIVES_H_
 
 #include "amxmodx.h"
-#include "sm_stringhashmap.h"
-#include "sm_memtable.h"
+#include 
+#include 
 #include "CVector.h"
 
 using namespace SourceMod;
diff --git a/amxmodx/sm_stringhashmap.h b/public/sm_stringhashmap.h
similarity index 100%
rename from amxmodx/sm_stringhashmap.h
rename to public/sm_stringhashmap.h