// ////////////////////////////////////////////////////////// // sha1.cpp // Copyright (c) 2014,2015 Stephan Brumme. All rights reserved. // see http://create.stephan-brumme.com/disclaimer.html // #include "sha1.h" /// same as reset() SHA1::SHA1() { reset(); } /// restart void SHA1::reset() { m_numBytes = 0; m_bufferSize = 0; // according to RFC 1321 m_hash[0] = 0x67452301; m_hash[1] = 0xefcdab89; m_hash[2] = 0x98badcfe; m_hash[3] = 0x10325476; m_hash[4] = 0xc3d2e1f0; } namespace { // mix functions for processBlock() inline uint32_t f1(uint32_t b, uint32_t c, uint32_t d) { return d ^ (b & (c ^ d)); // original: f = (b & c) | ((~b) & d); } inline uint32_t f2(uint32_t b, uint32_t c, uint32_t d) { return b ^ c ^ d; } inline uint32_t f3(uint32_t b, uint32_t c, uint32_t d) { return (b & c) | (b & d) | (c & d); } inline uint32_t rotate(uint32_t a, uint32_t c) { return (a << c) | (a >> (32 - c)); } inline uint32_t swap(uint32_t x) { #if defined(__GNUC__) || defined(__clang__) return __builtin_bswap32(x); #endif #ifdef _MSC_VER return _byteswap_ulong(x); #endif return (x >> 24) | ((x >> 8) & 0x0000FF00) | ((x << 8) & 0x00FF0000) | (x << 24); } } /// process 64 bytes void SHA1::processBlock(const void* data) { // get last hash uint32_t a = m_hash[0]; uint32_t b = m_hash[1]; uint32_t c = m_hash[2]; uint32_t d = m_hash[3]; uint32_t e = m_hash[4]; // data represented as 16x 32-bit words const uint32_t* input = (uint32_t*) data; // convert to big endian uint32_t words[80]; for (int i = 0; i < 16; i++) #if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && (__BYTE_ORDER == __BIG_ENDIAN) words[i] = input[i]; #else words[i] = swap(input[i]); #endif // extend to 80 words for (int i = 16; i < 80; i++) words[i] = rotate(words[i-3] ^ words[i-8] ^ words[i-14] ^ words[i-16], 1); // first round for (int i = 0; i < 4; i++) { int offset = 5*i; e += rotate(a,5) + f1(b,c,d) + words[offset ] + 0x5a827999; b = rotate(b,30); d += rotate(e,5) + f1(a,b,c) + words[offset+1] + 0x5a827999; a = rotate(a,30); c += rotate(d,5) + f1(e,a,b) + words[offset+2] + 0x5a827999; e = rotate(e,30); b += rotate(c,5) + f1(d,e,a) + words[offset+3] + 0x5a827999; d = rotate(d,30); a += rotate(b,5) + f1(c,d,e) + words[offset+4] + 0x5a827999; c = rotate(c,30); } // second round for (int i = 4; i < 8; i++) { int offset = 5*i; e += rotate(a,5) + f2(b,c,d) + words[offset ] + 0x6ed9eba1; b = rotate(b,30); d += rotate(e,5) + f2(a,b,c) + words[offset+1] + 0x6ed9eba1; a = rotate(a,30); c += rotate(d,5) + f2(e,a,b) + words[offset+2] + 0x6ed9eba1; e = rotate(e,30); b += rotate(c,5) + f2(d,e,a) + words[offset+3] + 0x6ed9eba1; d = rotate(d,30); a += rotate(b,5) + f2(c,d,e) + words[offset+4] + 0x6ed9eba1; c = rotate(c,30); } // third round for (int i = 8; i < 12; i++) { int offset = 5*i; e += rotate(a,5) + f3(b,c,d) + words[offset ] + 0x8f1bbcdc; b = rotate(b,30); d += rotate(e,5) + f3(a,b,c) + words[offset+1] + 0x8f1bbcdc; a = rotate(a,30); c += rotate(d,5) + f3(e,a,b) + words[offset+2] + 0x8f1bbcdc; e = rotate(e,30); b += rotate(c,5) + f3(d,e,a) + words[offset+3] + 0x8f1bbcdc; d = rotate(d,30); a += rotate(b,5) + f3(c,d,e) + words[offset+4] + 0x8f1bbcdc; c = rotate(c,30); } // fourth round for (int i = 12; i < 16; i++) { int offset = 5*i; e += rotate(a,5) + f2(b,c,d) + words[offset ] + 0xca62c1d6; b = rotate(b,30); d += rotate(e,5) + f2(a,b,c) + words[offset+1] + 0xca62c1d6; a = rotate(a,30); c += rotate(d,5) + f2(e,a,b) + words[offset+2] + 0xca62c1d6; e = rotate(e,30); b += rotate(c,5) + f2(d,e,a) + words[offset+3] + 0xca62c1d6; d = rotate(d,30); a += rotate(b,5) + f2(c,d,e) + words[offset+4] + 0xca62c1d6; c = rotate(c,30); } // update hash m_hash[0] += a; m_hash[1] += b; m_hash[2] += c; m_hash[3] += d; m_hash[4] += e; } /// add arbitrary number of bytes void SHA1::add(const void* data, size_t numBytes) { const uint8_t* current = (const uint8_t*) data; if (m_bufferSize > 0) { while (numBytes > 0 && m_bufferSize < BlockSize) { m_buffer[m_bufferSize++] = *current++; numBytes--; } } // full buffer if (m_bufferSize == BlockSize) { processBlock((void*)m_buffer); m_numBytes += BlockSize; m_bufferSize = 0; } // no more data ? if (numBytes == 0) return; // process full blocks while (numBytes >= BlockSize) { processBlock(current); current += BlockSize; m_numBytes += BlockSize; numBytes -= BlockSize; } // keep remaining bytes in buffer while (numBytes > 0) { m_buffer[m_bufferSize++] = *current++; numBytes--; } } /// process final block, less than 64 bytes void SHA1::processBuffer() { // the input bytes are considered as bits strings, where the first bit is the most significant bit of the byte // - append "1" bit to message // - append "0" bits until message length in bit mod 512 is 448 // - append length as 64 bit integer // number of bits size_t paddedLength = m_bufferSize * 8; // plus one bit set to 1 (always appended) paddedLength++; // number of bits must be (numBits % 512) = 448 size_t lower11Bits = paddedLength & 511; if (lower11Bits <= 448) paddedLength += 448 - lower11Bits; else paddedLength += 512 + 448 - lower11Bits; // convert from bits to bytes paddedLength /= 8; // only needed if additional data flows over into a second block unsigned char extra[BlockSize]; // append a "1" bit, 128 => binary 10000000 if (m_bufferSize < BlockSize) m_buffer[m_bufferSize] = 128; else extra[0] = 128; size_t i; for (i = m_bufferSize + 1; i < BlockSize; i++) m_buffer[i] = 0; for (; i < paddedLength; i++) extra[i - BlockSize] = 0; // add message length in bits as 64 bit number uint64_t msgBits = 8 * (m_numBytes + m_bufferSize); // find right position unsigned char* addLength; if (paddedLength < BlockSize) addLength = m_buffer + paddedLength; else addLength = extra + paddedLength - BlockSize; // must be big endian *addLength++ = (unsigned char)((msgBits >> 56) & 0xFF); *addLength++ = (unsigned char)((msgBits >> 48) & 0xFF); *addLength++ = (unsigned char)((msgBits >> 40) & 0xFF); *addLength++ = (unsigned char)((msgBits >> 32) & 0xFF); *addLength++ = (unsigned char)((msgBits >> 24) & 0xFF); *addLength++ = (unsigned char)((msgBits >> 16) & 0xFF); *addLength++ = (unsigned char)((msgBits >> 8) & 0xFF); *addLength = (unsigned char)( msgBits & 0xFF); // process blocks processBlock(m_buffer); // flowed over into a second block ? if (paddedLength > BlockSize) processBlock(extra); } /// return latest hash as 40 hex characters const char* SHA1::getHash() { // compute hash (as raw bytes) unsigned char rawHash[HashBytes]; getHash(rawHash); // convert to hex string static char result[40+1]; size_t written = 0; for (int i = 0; i < HashBytes; i++) { static const char dec2hex[16+1] = "0123456789abcdef"; result[written++] = dec2hex[(rawHash[i] >> 4) & 15]; result[written++] = dec2hex[ rawHash[i] & 15]; } result[written] = 0; return const_cast(result); } /// return latest hash as bytes void SHA1::getHash(unsigned char buffer[SHA1::HashBytes]) { // save old hash if buffer is partially filled uint32_t oldHash[HashValues]; for (int i = 0; i < HashValues; i++) oldHash[i] = m_hash[i]; // process remaining bytes processBuffer(); unsigned char* current = buffer; for (int i = 0; i < HashValues; i++) { *current++ = (m_hash[i] >> 24) & 0xFF; *current++ = (m_hash[i] >> 16) & 0xFF; *current++ = (m_hash[i] >> 8) & 0xFF; *current++ = m_hash[i] & 0xFF; // restore old hash m_hash[i] = oldHash[i]; } } /// compute SHA1 of a memory block const char* SHA1::operator()(const void* data, size_t numBytes) { reset(); add(data, numBytes); return getHash(); } /// compute SHA1 of a string, excluding final zero const char* SHA1::operator()(const char* text, size_t size) { reset(); add(text, size); return getHash(); }