/** * vim: set ts=4 sw=4 tw=99 noet : * ============================================================================= * SourceMod * Copyright (C) 2004-2011 AlliedModders LLC. All rights reserved. * ============================================================================= * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License, version 3.0, as published by the * Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . * * As a special exception, AlliedModders LLC gives you permission to link the * code of this program (as well as its derivative works) to "Half-Life 2," the * "Source Engine," the "SourcePawn JIT," and any Game MODs that run on software * by the Valve Corporation. You must obey the GNU General Public License in * all respects for all other code used. Additionally, AlliedModders LLC grants * this exception to all derivative works. AlliedModders LLC defines further * exceptions, found in LICENSE.txt (as of this writing, version JULY-31-2007), * or . */ #include "MemoryUtils.h" #include // sscanf #if defined(__linux__) #include #include #include #include #include #include #define PAGE_SIZE 4096 #define PAGE_ALIGN_UP(x) ((x + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)) #endif #if defined(__APPLE__) #include #include #include #include #include #include /* Define things from 10.6 SDK for older SDKs */ #ifndef MAC_OS_X_VERSION_10_6 struct task_dyld_info { mach_vm_address_t all_image_info_addr; mach_vm_size_t all_image_info_size; }; typedef struct task_dyld_info task_dyld_info_data_t; #define TASK_DYLD_INFO 17 #define TASK_DYLD_INFO_COUNT (sizeof(task_dyld_info_data_t) / sizeof(natural_t)) #endif // MAC_OS_X_VERSION_10_6 #endif // __APPLE__ MemoryUtils g_MemUtils; MemoryUtils::MemoryUtils() { #if defined(__APPLE__) Gestalt(gestaltSystemVersionMajor, &m_OSXMajor); Gestalt(gestaltSystemVersionMinor, &m_OSXMinor); /* Get pointer to struct that describes all loaded mach-o images in process */ if ((m_OSXMajor == 10 && m_OSXMinor >= 6) || m_OSXMajor > 10) { task_dyld_info_data_t dyld_info; mach_msg_type_number_t count = TASK_DYLD_INFO_COUNT; task_info(mach_task_self(), TASK_DYLD_INFO, (task_info_t)&dyld_info, &count); m_ImageList = (struct dyld_all_image_infos *)dyld_info.all_image_info_addr; } else { struct nlist list[2]; memset(list, 0, sizeof(list)); list[0].n_un.n_name = (char *)"_dyld_all_image_infos"; nlist("/usr/lib/dyld", list); m_ImageList = (struct dyld_all_image_infos *)list[0].n_value; } #endif } MemoryUtils::~MemoryUtils() { #if defined(__linux__) || defined(__APPLE__) for (size_t i = 0; i < m_SymTables.length(); i++) { delete m_SymTables[i]; } m_SymTables.clear(); #endif } void *MemoryUtils::DecodeAndFindPattern(const void *libPtr, const char *pattern) { unsigned char real_sig[511]; size_t real_bytes = DecodeHexString(real_sig, sizeof(real_sig), pattern); if (real_bytes >= 1) { return FindPattern(libPtr, (char*)real_sig, real_bytes); } return NULL; } void *MemoryUtils::FindPattern(const void *libPtr, const char *pattern, size_t len) { DynLibInfo lib; bool found; char *ptr, *end; memset(&lib, 0, sizeof(DynLibInfo)); if (!GetLibraryInfo(libPtr, lib)) { return NULL; } ptr = reinterpret_cast(lib.baseAddress); end = ptr + lib.memorySize - len; while (ptr < end) { found = true; for (register size_t i = 0; i < len; i++) { if (pattern[i] != '\x2A' && pattern[i] != ptr[i]) { found = false; break; } } if (found) return ptr; ptr++; } return NULL; } void *MemoryUtils::ResolveSymbol(void *handle, const char *symbol) { #if defined(WIN32) return GetProcAddress((HMODULE)handle, symbol); #elif defined(__linux__) void *addr = dlsym(handle, symbol); if (addr) { return addr; } struct link_map *dlmap; struct stat dlstat; int dlfile; uintptr_t map_base; Elf32_Ehdr *file_hdr; Elf32_Shdr *sections, *shstrtab_hdr, *symtab_hdr, *strtab_hdr; Elf32_Sym *symtab; const char *shstrtab, *strtab; uint16_t section_count; uint32_t symbol_count; LibSymbolTable *libtable; SymbolTable *table; Symbol *symbol_entry; dlmap = (struct link_map *)handle; symtab_hdr = NULL; strtab_hdr = NULL; table = NULL; /* See if we already have a symbol table for this library */ for (size_t i = 0; i < m_SymTables.length(); i++) { libtable = m_SymTables[i]; if (libtable->lib_base == dlmap->l_addr) { table = &libtable->table; break; } } /* If we don't have a symbol table for this library, then create one */ if (table == NULL) { libtable = new LibSymbolTable(); libtable->table.Initialize(); libtable->lib_base = dlmap->l_addr; libtable->last_pos = 0; table = &libtable->table; m_SymTables.append(libtable); } /* See if the symbol is already cached in our table */ symbol_entry = table->FindSymbol(symbol, strlen(symbol)); if (symbol_entry != NULL) { return symbol_entry->address; } /* If symbol isn't in our table, then we have open the actual library */ dlfile = open(dlmap->l_name, O_RDONLY); if (dlfile == -1 || fstat(dlfile, &dlstat) == -1) { close(dlfile); return NULL; } /* Map library file into memory */ file_hdr = (Elf32_Ehdr *)mmap(NULL, dlstat.st_size, PROT_READ, MAP_PRIVATE, dlfile, 0); map_base = (uintptr_t)file_hdr; if (file_hdr == MAP_FAILED) { close(dlfile); return NULL; } close(dlfile); if (file_hdr->e_shoff == 0 || file_hdr->e_shstrndx == SHN_UNDEF) { munmap(file_hdr, dlstat.st_size); return NULL; } sections = (Elf32_Shdr *)(map_base + file_hdr->e_shoff); section_count = file_hdr->e_shnum; /* Get ELF section header string table */ shstrtab_hdr = §ions[file_hdr->e_shstrndx]; shstrtab = (const char *)(map_base + shstrtab_hdr->sh_offset); /* Iterate sections while looking for ELF symbol table and string table */ for (uint16_t i = 0; i < section_count; i++) { Elf32_Shdr &hdr = sections[i]; const char *section_name = shstrtab + hdr.sh_name; if (strcmp(section_name, ".symtab") == 0) { symtab_hdr = &hdr; } else if (strcmp(section_name, ".strtab") == 0) { strtab_hdr = &hdr; } } /* Uh oh, we don't have a symbol table or a string table */ if (symtab_hdr == NULL || strtab_hdr == NULL) { munmap(file_hdr, dlstat.st_size); return NULL; } symtab = (Elf32_Sym *)(map_base + symtab_hdr->sh_offset); strtab = (const char *)(map_base + strtab_hdr->sh_offset); symbol_count = symtab_hdr->sh_size / symtab_hdr->sh_entsize; /* Iterate symbol table starting from the position we were at last time */ for (uint32_t i = libtable->last_pos; i < symbol_count; i++) { Elf32_Sym &sym = symtab[i]; unsigned char sym_type = ELF32_ST_TYPE(sym.st_info); const char *sym_name = strtab + sym.st_name; Symbol *cur_sym; /* Skip symbols that are undefined or do not refer to functions or objects */ if (sym.st_shndx == SHN_UNDEF || (sym_type != STT_FUNC && sym_type != STT_OBJECT)) { continue; } /* Caching symbols as we go along */ cur_sym = table->InternSymbol(sym_name, strlen(sym_name), (void *)(dlmap->l_addr + sym.st_value)); if (strcmp(symbol, sym_name) == 0) { symbol_entry = cur_sym; libtable->last_pos = ++i; break; } } munmap(file_hdr, dlstat.st_size); return symbol_entry ? symbol_entry->address : NULL; #elif defined(__APPLE__) uintptr_t dlbase, linkedit_addr; uint32_t image_count; struct mach_header *file_hdr; struct load_command *loadcmds; struct segment_command *linkedit_hdr; struct symtab_command *symtab_hdr; struct nlist *symtab; const char *strtab; uint32_t loadcmd_count; uint32_t symbol_count; LibSymbolTable *libtable; SymbolTable *table; Symbol *symbol_entry; dlbase = 0; image_count = m_ImageList->infoArrayCount; linkedit_hdr = NULL; symtab_hdr = NULL; table = NULL; /* Loop through mach-o images in process. * We can skip index 0 since that is just the executable. */ for (uint32_t i = 1; i < image_count; i++) { const struct dyld_image_info &info = m_ImageList->infoArray[i]; /* "Load" each one until we get a matching handle */ void *h = dlopen(info.imageFilePath, RTLD_NOLOAD); if (h == handle) { dlbase = (uintptr_t)info.imageLoadAddress; dlclose(h); break; } dlclose(h); } if (!dlbase) { /* Uh oh, we couldn't find a matching handle */ return NULL; } /* See if we already have a symbol table for this library */ for (size_t i = 0; i < m_SymTables.length(); i++) { libtable = m_SymTables[i]; if (libtable->lib_base == dlbase) { table = &libtable->table; break; } } /* If we don't have a symbol table for this library, then create one */ if (table == NULL) { libtable = new LibSymbolTable(); libtable->table.Initialize(); libtable->lib_base = dlbase; libtable->last_pos = 0; table = &libtable->table; m_SymTables.append(libtable); } /* See if the symbol is already cached in our table */ symbol_entry = table->FindSymbol(symbol, strlen(symbol)); if (symbol_entry != NULL) { return symbol_entry->address; } /* If symbol isn't in our table, then we have to locate it in memory */ file_hdr = (struct mach_header *)dlbase; loadcmds = (struct load_command *)(dlbase + sizeof(struct mach_header)); loadcmd_count = file_hdr->ncmds; /* Loop through load commands until we find the ones for the symbol table */ for (uint32_t i = 0; i < loadcmd_count; i++) { if (loadcmds->cmd == LC_SEGMENT && !linkedit_hdr) { struct segment_command *seg = (struct segment_command *)loadcmds; if (strcmp(seg->segname, "__LINKEDIT") == 0) { linkedit_hdr = seg; if (symtab_hdr) { break; } } } else if (loadcmds->cmd == LC_SYMTAB) { symtab_hdr = (struct symtab_command *)loadcmds; if (linkedit_hdr) { break; } } /* Load commands are not of a fixed size which is why we add the size */ loadcmds = (struct load_command *)((uintptr_t)loadcmds + loadcmds->cmdsize); } if (!linkedit_hdr || !symtab_hdr || !symtab_hdr->symoff || !symtab_hdr->stroff) { /* Uh oh, no symbol table */ return NULL; } linkedit_addr = dlbase + linkedit_hdr->vmaddr; symtab = (struct nlist *)(linkedit_addr + symtab_hdr->symoff - linkedit_hdr->fileoff); strtab = (const char *)(linkedit_addr + symtab_hdr->stroff - linkedit_hdr->fileoff); symbol_count = symtab_hdr->nsyms; /* Iterate symbol table starting from the position we were at last time */ for (uint32_t i = libtable->last_pos; i < symbol_count; i++) { struct nlist &sym = symtab[i]; /* Ignore the prepended underscore on all symbols, so +1 here */ const char *sym_name = strtab + sym.n_un.n_strx + 1; Symbol *cur_sym; /* Skip symbols that are undefined */ if (sym.n_sect == NO_SECT) { continue; } /* Caching symbols as we go along */ cur_sym = table->InternSymbol(sym_name, strlen(sym_name), (void *)(dlbase + sym.n_value)); if (strcmp(symbol, sym_name) == 0) { symbol_entry = cur_sym; libtable->last_pos = ++i; break; } } return symbol_entry ? symbol_entry->address : NULL; #endif } bool MemoryUtils::GetLibraryInfo(const void *libPtr, DynLibInfo &lib) { uintptr_t baseAddr; if (libPtr == NULL) { return false; } #if defined(WIN32) MEMORY_BASIC_INFORMATION info; IMAGE_DOS_HEADER *dos; IMAGE_NT_HEADERS *pe; IMAGE_FILE_HEADER *file; IMAGE_OPTIONAL_HEADER *opt; if (!VirtualQuery(libPtr, &info, sizeof(MEMORY_BASIC_INFORMATION))) { return false; } baseAddr = reinterpret_cast(info.AllocationBase); /* All this is for our insane sanity checks :o */ dos = reinterpret_cast(baseAddr); pe = reinterpret_cast(baseAddr + dos->e_lfanew); file = &pe->FileHeader; opt = &pe->OptionalHeader; /* Check PE magic and signature */ if (dos->e_magic != IMAGE_DOS_SIGNATURE || pe->Signature != IMAGE_NT_SIGNATURE || opt->Magic != IMAGE_NT_OPTIONAL_HDR32_MAGIC) { return false; } /* Check architecture, which is 32-bit/x86 right now * Should change this for 64-bit if Valve gets their act together */ if (file->Machine != IMAGE_FILE_MACHINE_I386) { return false; } /* For our purposes, this must be a dynamic library */ if ((file->Characteristics & IMAGE_FILE_DLL) == 0) { return false; } /* Finally, we can do this */ lib.memorySize = opt->SizeOfImage; #elif defined(__linux__) Dl_info info; Elf32_Ehdr *file; Elf32_Phdr *phdr; uint16_t phdrCount; if (!dladdr(libPtr, &info)) { return false; } if (!info.dli_fbase || !info.dli_fname) { return false; } /* This is for our insane sanity checks :o */ baseAddr = reinterpret_cast(info.dli_fbase); file = reinterpret_cast(baseAddr); /* Check ELF magic */ if (memcmp(ELFMAG, file->e_ident, SELFMAG) != 0) { return false; } /* Check ELF version */ if (file->e_ident[EI_VERSION] != EV_CURRENT) { return false; } /* Check ELF architecture, which is 32-bit/x86 right now * Should change this for 64-bit if Valve gets their act together */ if (file->e_ident[EI_CLASS] != ELFCLASS32 || file->e_machine != EM_386 || file->e_ident[EI_DATA] != ELFDATA2LSB) { return false; } /* For our purposes, this must be a dynamic library/shared object */ if (file->e_type != ET_DYN) { return false; } phdrCount = file->e_phnum; phdr = reinterpret_cast(baseAddr + file->e_phoff); for (uint16_t i = 0; i < phdrCount; i++) { Elf32_Phdr &hdr = phdr[i]; /* We only really care about the segment with executable code */ if (hdr.p_type == PT_LOAD && hdr.p_flags == (PF_X|PF_R)) { /* From glibc, elf/dl-load.c: * c->mapend = ((ph->p_vaddr + ph->p_filesz + GLRO(dl_pagesize) - 1) * & ~(GLRO(dl_pagesize) - 1)); * * In glibc, the segment file size is aligned up to the nearest page size and * added to the virtual address of the segment. We just want the size here. */ lib.memorySize = PAGE_ALIGN_UP(hdr.p_filesz); break; } } #elif defined(__APPLE__) Dl_info info; struct mach_header *file; struct segment_command *seg; uint32_t cmd_count; if (!dladdr(libPtr, &info)) { return false; } if (!info.dli_fbase || !info.dli_fname) { return false; } /* This is for our insane sanity checks :o */ baseAddr = (uintptr_t)info.dli_fbase; file = (struct mach_header *)baseAddr; /* Check Mach-O magic */ if (file->magic != MH_MAGIC) { return false; } /* Check architecture (32-bit/x86) */ if (file->cputype != CPU_TYPE_I386 || file->cpusubtype != CPU_SUBTYPE_I386_ALL) { return false; } /* For our purposes, this must be a dynamic library */ if (file->filetype != MH_DYLIB) { return false; } cmd_count = file->ncmds; seg = (struct segment_command *)(baseAddr + sizeof(struct mach_header)); /* Add up memory sizes of mapped segments */ for (uint32_t i = 0; i < cmd_count; i++) { if (seg->cmd == LC_SEGMENT) { lib.memorySize += seg->vmsize; } seg = (struct segment_command *)((uintptr_t)seg + seg->cmdsize); } #endif lib.baseAddress = reinterpret_cast(baseAddr); return true; } bool MemoryUtils::GetLibraryOfAddress(const void *libPtr, char *buffer, size_t maxlength, uintptr_t *base) { #if defined(__linux__) || defined(__APPLE__) Dl_info info; if (!dladdr(libPtr, &info)) { return false; } if (!info.dli_fbase || !info.dli_fname) { return false; } const char *dllpath = info.dli_fname; Format(buffer, maxlength, "%s", dllpath); if (base) { *base = (uintptr_t)info.dli_fbase; } #else MEMORY_BASIC_INFORMATION mem; if (!VirtualQuery(libPtr, &mem, sizeof(mem))) { return false; } if (mem.AllocationBase == NULL) { return false; } HMODULE dll = (HMODULE)mem.AllocationBase; GetModuleFileName(dll, (LPTSTR)buffer, maxlength); if (base) { *base = (uintptr_t)mem.AllocationBase; } #endif return true; } size_t MemoryUtils::DecodeHexString(unsigned char *buffer, size_t maxlength, const char *hexstr) { size_t written = 0; size_t length = strlen(hexstr); for (size_t i = 0; i < length; i++) { if (written >= maxlength) break; buffer[written++] = hexstr[i]; if (hexstr[i] == '\\' && hexstr[i + 1] == 'x') { if (i + 3 >= length) continue; /* Get the hex part. */ char s_byte[3]; int r_byte; s_byte[0] = hexstr[i + 2]; s_byte[1] = hexstr[i + 3]; s_byte[2] = '\0'; /* Read it as an integer */ sscanf(s_byte, "%x", &r_byte); /* Save the value */ buffer[written - 1] = r_byte; /* Adjust index */ i += 3; } } return written; } size_t MemoryUtils::Format(char *buffer, size_t maxlength, const char *fmt, ...) { va_list ap; va_start(ap, fmt); size_t len = vsnprintf(buffer, maxlength, fmt, ap); va_end(ap); if (len >= maxlength) { buffer[maxlength - 1] = '\0'; return (maxlength - 1); } return len; }