// ////////////////////////////////////////////////////////// // md5.cpp // Copyright (c) 2014,2015 Stephan Brumme. All rights reserved. // see http://create.stephan-brumme.com/disclaimer.html // #include "md5.h" /// same as reset() MD5::MD5() { reset(); } /// restart void MD5::reset() { m_numBytes = 0; m_bufferSize = 0; // according to RFC 1321 m_hash[0] = 0x67452301; m_hash[1] = 0xefcdab89; m_hash[2] = 0x98badcfe; m_hash[3] = 0x10325476; } namespace { // mix functions for processBlock() inline uint32_t f1(uint32_t b, uint32_t c, uint32_t d) { return d ^ (b & (c ^ d)); // original: f = (b & c) | ((~b) & d); } inline uint32_t f2(uint32_t b, uint32_t c, uint32_t d) { return c ^ (d & (b ^ c)); // original: f = (b & d) | (c & (~d)); } inline uint32_t f3(uint32_t b, uint32_t c, uint32_t d) { return b ^ c ^ d; } inline uint32_t f4(uint32_t b, uint32_t c, uint32_t d) { return c ^ (b | ~d); } inline uint32_t rotate(uint32_t a, uint32_t c) { return (a << c) | (a >> (32 - c)); } #if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && (__BYTE_ORDER == __BIG_ENDIAN) inline uint32_t swap(uint32_t x) { #if defined(__GNUC__) || defined(__clang__) return __builtin_bswap32(x); #endif #ifdef _MSC_VER return _byteswap_ulong(x); #endif return (x >> 24) | ((x >> 8) & 0x0000FF00) | ((x << 8) & 0x00FF0000) | (x << 24); } #endif } /// process 64 bytes void MD5::processBlock(const void* data) { // get last hash uint32_t a = m_hash[0]; uint32_t b = m_hash[1]; uint32_t c = m_hash[2]; uint32_t d = m_hash[3]; // data represented as 16x 32-bit words const uint32_t* words = (uint32_t*) data; // computations are little endian, swap data if necessary #if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && (__BYTE_ORDER == __BIG_ENDIAN) #define LITTLEENDIAN(x) swap(x) #else #define LITTLEENDIAN(x) (x) #endif // first round uint32_t word0 = LITTLEENDIAN(words[ 0]); a = rotate(a + f1(b,c,d) + word0 + 0xd76aa478, 7) + b; uint32_t word1 = LITTLEENDIAN(words[ 1]); d = rotate(d + f1(a,b,c) + word1 + 0xe8c7b756, 12) + a; uint32_t word2 = LITTLEENDIAN(words[ 2]); c = rotate(c + f1(d,a,b) + word2 + 0x242070db, 17) + d; uint32_t word3 = LITTLEENDIAN(words[ 3]); b = rotate(b + f1(c,d,a) + word3 + 0xc1bdceee, 22) + c; uint32_t word4 = LITTLEENDIAN(words[ 4]); a = rotate(a + f1(b,c,d) + word4 + 0xf57c0faf, 7) + b; uint32_t word5 = LITTLEENDIAN(words[ 5]); d = rotate(d + f1(a,b,c) + word5 + 0x4787c62a, 12) + a; uint32_t word6 = LITTLEENDIAN(words[ 6]); c = rotate(c + f1(d,a,b) + word6 + 0xa8304613, 17) + d; uint32_t word7 = LITTLEENDIAN(words[ 7]); b = rotate(b + f1(c,d,a) + word7 + 0xfd469501, 22) + c; uint32_t word8 = LITTLEENDIAN(words[ 8]); a = rotate(a + f1(b,c,d) + word8 + 0x698098d8, 7) + b; uint32_t word9 = LITTLEENDIAN(words[ 9]); d = rotate(d + f1(a,b,c) + word9 + 0x8b44f7af, 12) + a; uint32_t word10 = LITTLEENDIAN(words[10]); c = rotate(c + f1(d,a,b) + word10 + 0xffff5bb1, 17) + d; uint32_t word11 = LITTLEENDIAN(words[11]); b = rotate(b + f1(c,d,a) + word11 + 0x895cd7be, 22) + c; uint32_t word12 = LITTLEENDIAN(words[12]); a = rotate(a + f1(b,c,d) + word12 + 0x6b901122, 7) + b; uint32_t word13 = LITTLEENDIAN(words[13]); d = rotate(d + f1(a,b,c) + word13 + 0xfd987193, 12) + a; uint32_t word14 = LITTLEENDIAN(words[14]); c = rotate(c + f1(d,a,b) + word14 + 0xa679438e, 17) + d; uint32_t word15 = LITTLEENDIAN(words[15]); b = rotate(b + f1(c,d,a) + word15 + 0x49b40821, 22) + c; // second round a = rotate(a + f2(b,c,d) + word1 + 0xf61e2562, 5) + b; d = rotate(d + f2(a,b,c) + word6 + 0xc040b340, 9) + a; c = rotate(c + f2(d,a,b) + word11 + 0x265e5a51, 14) + d; b = rotate(b + f2(c,d,a) + word0 + 0xe9b6c7aa, 20) + c; a = rotate(a + f2(b,c,d) + word5 + 0xd62f105d, 5) + b; d = rotate(d + f2(a,b,c) + word10 + 0x02441453, 9) + a; c = rotate(c + f2(d,a,b) + word15 + 0xd8a1e681, 14) + d; b = rotate(b + f2(c,d,a) + word4 + 0xe7d3fbc8, 20) + c; a = rotate(a + f2(b,c,d) + word9 + 0x21e1cde6, 5) + b; d = rotate(d + f2(a,b,c) + word14 + 0xc33707d6, 9) + a; c = rotate(c + f2(d,a,b) + word3 + 0xf4d50d87, 14) + d; b = rotate(b + f2(c,d,a) + word8 + 0x455a14ed, 20) + c; a = rotate(a + f2(b,c,d) + word13 + 0xa9e3e905, 5) + b; d = rotate(d + f2(a,b,c) + word2 + 0xfcefa3f8, 9) + a; c = rotate(c + f2(d,a,b) + word7 + 0x676f02d9, 14) + d; b = rotate(b + f2(c,d,a) + word12 + 0x8d2a4c8a, 20) + c; // third round a = rotate(a + f3(b,c,d) + word5 + 0xfffa3942, 4) + b; d = rotate(d + f3(a,b,c) + word8 + 0x8771f681, 11) + a; c = rotate(c + f3(d,a,b) + word11 + 0x6d9d6122, 16) + d; b = rotate(b + f3(c,d,a) + word14 + 0xfde5380c, 23) + c; a = rotate(a + f3(b,c,d) + word1 + 0xa4beea44, 4) + b; d = rotate(d + f3(a,b,c) + word4 + 0x4bdecfa9, 11) + a; c = rotate(c + f3(d,a,b) + word7 + 0xf6bb4b60, 16) + d; b = rotate(b + f3(c,d,a) + word10 + 0xbebfbc70, 23) + c; a = rotate(a + f3(b,c,d) + word13 + 0x289b7ec6, 4) + b; d = rotate(d + f3(a,b,c) + word0 + 0xeaa127fa, 11) + a; c = rotate(c + f3(d,a,b) + word3 + 0xd4ef3085, 16) + d; b = rotate(b + f3(c,d,a) + word6 + 0x04881d05, 23) + c; a = rotate(a + f3(b,c,d) + word9 + 0xd9d4d039, 4) + b; d = rotate(d + f3(a,b,c) + word12 + 0xe6db99e5, 11) + a; c = rotate(c + f3(d,a,b) + word15 + 0x1fa27cf8, 16) + d; b = rotate(b + f3(c,d,a) + word2 + 0xc4ac5665, 23) + c; // fourth round a = rotate(a + f4(b,c,d) + word0 + 0xf4292244, 6) + b; d = rotate(d + f4(a,b,c) + word7 + 0x432aff97, 10) + a; c = rotate(c + f4(d,a,b) + word14 + 0xab9423a7, 15) + d; b = rotate(b + f4(c,d,a) + word5 + 0xfc93a039, 21) + c; a = rotate(a + f4(b,c,d) + word12 + 0x655b59c3, 6) + b; d = rotate(d + f4(a,b,c) + word3 + 0x8f0ccc92, 10) + a; c = rotate(c + f4(d,a,b) + word10 + 0xffeff47d, 15) + d; b = rotate(b + f4(c,d,a) + word1 + 0x85845dd1, 21) + c; a = rotate(a + f4(b,c,d) + word8 + 0x6fa87e4f, 6) + b; d = rotate(d + f4(a,b,c) + word15 + 0xfe2ce6e0, 10) + a; c = rotate(c + f4(d,a,b) + word6 + 0xa3014314, 15) + d; b = rotate(b + f4(c,d,a) + word13 + 0x4e0811a1, 21) + c; a = rotate(a + f4(b,c,d) + word4 + 0xf7537e82, 6) + b; d = rotate(d + f4(a,b,c) + word11 + 0xbd3af235, 10) + a; c = rotate(c + f4(d,a,b) + word2 + 0x2ad7d2bb, 15) + d; b = rotate(b + f4(c,d,a) + word9 + 0xeb86d391, 21) + c; // update hash m_hash[0] += a; m_hash[1] += b; m_hash[2] += c; m_hash[3] += d; } /// add arbitrary number of bytes void MD5::add(const void* data, size_t numBytes) { const uint8_t* current = (const uint8_t*) data; if (m_bufferSize > 0) { while (numBytes > 0 && m_bufferSize < BlockSize) { m_buffer[m_bufferSize++] = *current++; numBytes--; } } // full buffer if (m_bufferSize == BlockSize) { processBlock(m_buffer); m_numBytes += BlockSize; m_bufferSize = 0; } // no more data ? if (numBytes == 0) return; // process full blocks while (numBytes >= BlockSize) { processBlock(current); current += BlockSize; m_numBytes += BlockSize; numBytes -= BlockSize; } // keep remaining bytes in buffer while (numBytes > 0) { m_buffer[m_bufferSize++] = *current++; numBytes--; } } /// process final block, less than 64 bytes void MD5::processBuffer() { // the input bytes are considered as bits strings, where the first bit is the most significant bit of the byte // - append "1" bit to message // - append "0" bits until message length in bit mod 512 is 448 // - append length as 64 bit integer // number of bits size_t paddedLength = m_bufferSize * 8; // plus one bit set to 1 (always appended) paddedLength++; // number of bits must be (numBits % 512) = 448 size_t lower11Bits = paddedLength & 511; if (lower11Bits <= 448) paddedLength += 448 - lower11Bits; else paddedLength += 512 + 448 - lower11Bits; // convert from bits to bytes paddedLength /= 8; // only needed if additional data flows over into a second block unsigned char extra[BlockSize]; // append a "1" bit, 128 => binary 10000000 if (m_bufferSize < BlockSize) m_buffer[m_bufferSize] = 128; else extra[0] = 128; size_t i; for (i = m_bufferSize + 1; i < BlockSize; i++) m_buffer[i] = 0; for (; i < paddedLength; i++) extra[i - BlockSize] = 0; // add message length in bits as 64 bit number uint64_t msgBits = 8 * (m_numBytes + m_bufferSize); // find right position unsigned char* addLength; if (paddedLength < BlockSize) addLength = m_buffer + paddedLength; else addLength = extra + paddedLength - BlockSize; // must be little endian *addLength++ = msgBits & 0xFF; msgBits >>= 8; *addLength++ = msgBits & 0xFF; msgBits >>= 8; *addLength++ = msgBits & 0xFF; msgBits >>= 8; *addLength++ = msgBits & 0xFF; msgBits >>= 8; *addLength++ = msgBits & 0xFF; msgBits >>= 8; *addLength++ = msgBits & 0xFF; msgBits >>= 8; *addLength++ = msgBits & 0xFF; msgBits >>= 8; *addLength++ = msgBits & 0xFF; // process blocks processBlock(m_buffer); // flowed over into a second block ? if (paddedLength > BlockSize) processBlock(extra); } /// return latest hash as 32 hex characters const char* MD5::getHash() { // compute hash (as raw bytes) unsigned char rawHash[HashBytes]; getHash(rawHash); // convert to hex string static char result[32+1]; size_t written = 0; for (int i = 0; i < HashBytes; i++) { static const char dec2hex[16+1] = "0123456789abcdef"; result[written++] = dec2hex[(rawHash[i] >> 4) & 15]; result[written++] = dec2hex[ rawHash[i] & 15]; } result[written] = 0; return const_cast<const char *>(result); } /// return latest hash as bytes void MD5::getHash(unsigned char buffer[MD5::HashBytes]) { // save old hash if buffer is partially filled uint32_t oldHash[HashValues]; for (int i = 0; i < HashValues; i++) oldHash[i] = m_hash[i]; // process remaining bytes processBuffer(); unsigned char* current = buffer; for (int i = 0; i < HashValues; i++) { *current++ = m_hash[i] & 0xFF; *current++ = (m_hash[i] >> 8) & 0xFF; *current++ = (m_hash[i] >> 16) & 0xFF; *current++ = (m_hash[i] >> 24) & 0xFF; // restore old hash m_hash[i] = oldHash[i]; } } /// compute MD5 of a memory block const char* MD5::operator()(const void* data, size_t numBytes) { reset(); add(data, numBytes); return getHash(); } /// compute MD5 of a string, excluding final zero const char* MD5::operator()(const char* text, size_t size) { reset(); add(text, size); return getHash(); }