// Copyright (c) 2010, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: Sanjay Ghemawat #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <stdlib.h> #include <stdio.h> #include <ctype.h> #include <limits.h> /* for SHRT_MIN, USHRT_MAX, etc */ #include <string.h> /* for memcpy */ #include <assert.h> #include <errno.h> #include <string> #include <algorithm> #include "pcrecpp_internal.h" #include "pcre.h" #include "pcrecpp.h" #include "pcre_stringpiece.h" namespace pcrecpp { // Maximum number of args we can set static const int kMaxArgs = 16; static const int kVecSize = (1 + kMaxArgs) * 3; // results + PCRE workspace // Special object that stands-in for no argument Arg RE::no_arg((void*)NULL); // This is for ABI compatibility with old versions of pcre (pre-7.6), // which defined a global no_arg variable instead of putting it in the // RE class. This works on GCC >= 3, at least. It definitely works // for ELF, but may not for other object formats (Mach-O, for // instance, does not support aliases.) We could probably have a more // inclusive test if we ever needed it. (Note that not only the // __attribute__ syntax, but also __USER_LABEL_PREFIX__, are // gnu-specific.) #if defined(__GNUC__) && __GNUC__ >= 3 && defined(__ELF__) # define ULP_AS_STRING(x) ULP_AS_STRING_INTERNAL(x) # define ULP_AS_STRING_INTERNAL(x) #x # define USER_LABEL_PREFIX_STR ULP_AS_STRING(__USER_LABEL_PREFIX__) extern Arg no_arg __attribute__((alias(USER_LABEL_PREFIX_STR "_ZN7pcrecpp2RE6no_argE"))); #endif // If a regular expression has no error, its error_ field points here static const string empty_string; // If the user doesn't ask for any options, we just use this one static RE_Options default_options; void RE::Init(const string& pat, const RE_Options* options) { pattern_ = pat; if (options == NULL) { options_ = default_options; } else { options_ = *options; } error_ = &empty_string; re_full_ = NULL; re_partial_ = NULL; re_partial_ = Compile(UNANCHORED); if (re_partial_ != NULL) { re_full_ = Compile(ANCHOR_BOTH); } } void RE::Cleanup() { if (re_full_ != NULL) (*pcre_free)(re_full_); if (re_partial_ != NULL) (*pcre_free)(re_partial_); if (error_ != &empty_string) delete error_; } RE::~RE() { Cleanup(); } pcre* RE::Compile(Anchor anchor) { // First, convert RE_Options into pcre options int pcre_options = 0; pcre_options = options_.all_options(); // Special treatment for anchoring. This is needed because at // runtime pcre only provides an option for anchoring at the // beginning of a string (unless you use offset). // // There are three types of anchoring we want: // UNANCHORED Compile the original pattern, and use // a pcre unanchored match. // ANCHOR_START Compile the original pattern, and use // a pcre anchored match. // ANCHOR_BOTH Tack a "\z" to the end of the original pattern // and use a pcre anchored match. const char* compile_error; int eoffset; pcre* re; if (anchor != ANCHOR_BOTH) { re = pcre_compile(pattern_.c_str(), pcre_options, &compile_error, &eoffset, NULL); } else { // Tack a '\z' at the end of RE. Parenthesize it first so that // the '\z' applies to all top-level alternatives in the regexp. string wrapped = "(?:"; // A non-counting grouping operator wrapped += pattern_; wrapped += ")\\z"; re = pcre_compile(wrapped.c_str(), pcre_options, &compile_error, &eoffset, NULL); } if (re == NULL) { if (error_ == &empty_string) error_ = new string(compile_error); } return re; } /***** Matching interfaces *****/ bool RE::FullMatch(const StringPiece& text, const Arg& ptr1, const Arg& ptr2, const Arg& ptr3, const Arg& ptr4, const Arg& ptr5, const Arg& ptr6, const Arg& ptr7, const Arg& ptr8, const Arg& ptr9, const Arg& ptr10, const Arg& ptr11, const Arg& ptr12, const Arg& ptr13, const Arg& ptr14, const Arg& ptr15, const Arg& ptr16) const { const Arg* args[kMaxArgs]; int n = 0; if (&ptr1 == &no_arg) goto done; args[n++] = &ptr1; if (&ptr2 == &no_arg) goto done; args[n++] = &ptr2; if (&ptr3 == &no_arg) goto done; args[n++] = &ptr3; if (&ptr4 == &no_arg) goto done; args[n++] = &ptr4; if (&ptr5 == &no_arg) goto done; args[n++] = &ptr5; if (&ptr6 == &no_arg) goto done; args[n++] = &ptr6; if (&ptr7 == &no_arg) goto done; args[n++] = &ptr7; if (&ptr8 == &no_arg) goto done; args[n++] = &ptr8; if (&ptr9 == &no_arg) goto done; args[n++] = &ptr9; if (&ptr10 == &no_arg) goto done; args[n++] = &ptr10; if (&ptr11 == &no_arg) goto done; args[n++] = &ptr11; if (&ptr12 == &no_arg) goto done; args[n++] = &ptr12; if (&ptr13 == &no_arg) goto done; args[n++] = &ptr13; if (&ptr14 == &no_arg) goto done; args[n++] = &ptr14; if (&ptr15 == &no_arg) goto done; args[n++] = &ptr15; if (&ptr16 == &no_arg) goto done; args[n++] = &ptr16; done: int consumed; int vec[kVecSize]; return DoMatchImpl(text, ANCHOR_BOTH, &consumed, args, n, vec, kVecSize); } bool RE::PartialMatch(const StringPiece& text, const Arg& ptr1, const Arg& ptr2, const Arg& ptr3, const Arg& ptr4, const Arg& ptr5, const Arg& ptr6, const Arg& ptr7, const Arg& ptr8, const Arg& ptr9, const Arg& ptr10, const Arg& ptr11, const Arg& ptr12, const Arg& ptr13, const Arg& ptr14, const Arg& ptr15, const Arg& ptr16) const { const Arg* args[kMaxArgs]; int n = 0; if (&ptr1 == &no_arg) goto done; args[n++] = &ptr1; if (&ptr2 == &no_arg) goto done; args[n++] = &ptr2; if (&ptr3 == &no_arg) goto done; args[n++] = &ptr3; if (&ptr4 == &no_arg) goto done; args[n++] = &ptr4; if (&ptr5 == &no_arg) goto done; args[n++] = &ptr5; if (&ptr6 == &no_arg) goto done; args[n++] = &ptr6; if (&ptr7 == &no_arg) goto done; args[n++] = &ptr7; if (&ptr8 == &no_arg) goto done; args[n++] = &ptr8; if (&ptr9 == &no_arg) goto done; args[n++] = &ptr9; if (&ptr10 == &no_arg) goto done; args[n++] = &ptr10; if (&ptr11 == &no_arg) goto done; args[n++] = &ptr11; if (&ptr12 == &no_arg) goto done; args[n++] = &ptr12; if (&ptr13 == &no_arg) goto done; args[n++] = &ptr13; if (&ptr14 == &no_arg) goto done; args[n++] = &ptr14; if (&ptr15 == &no_arg) goto done; args[n++] = &ptr15; if (&ptr16 == &no_arg) goto done; args[n++] = &ptr16; done: int consumed; int vec[kVecSize]; return DoMatchImpl(text, UNANCHORED, &consumed, args, n, vec, kVecSize); } bool RE::Consume(StringPiece* input, const Arg& ptr1, const Arg& ptr2, const Arg& ptr3, const Arg& ptr4, const Arg& ptr5, const Arg& ptr6, const Arg& ptr7, const Arg& ptr8, const Arg& ptr9, const Arg& ptr10, const Arg& ptr11, const Arg& ptr12, const Arg& ptr13, const Arg& ptr14, const Arg& ptr15, const Arg& ptr16) const { const Arg* args[kMaxArgs]; int n = 0; if (&ptr1 == &no_arg) goto done; args[n++] = &ptr1; if (&ptr2 == &no_arg) goto done; args[n++] = &ptr2; if (&ptr3 == &no_arg) goto done; args[n++] = &ptr3; if (&ptr4 == &no_arg) goto done; args[n++] = &ptr4; if (&ptr5 == &no_arg) goto done; args[n++] = &ptr5; if (&ptr6 == &no_arg) goto done; args[n++] = &ptr6; if (&ptr7 == &no_arg) goto done; args[n++] = &ptr7; if (&ptr8 == &no_arg) goto done; args[n++] = &ptr8; if (&ptr9 == &no_arg) goto done; args[n++] = &ptr9; if (&ptr10 == &no_arg) goto done; args[n++] = &ptr10; if (&ptr11 == &no_arg) goto done; args[n++] = &ptr11; if (&ptr12 == &no_arg) goto done; args[n++] = &ptr12; if (&ptr13 == &no_arg) goto done; args[n++] = &ptr13; if (&ptr14 == &no_arg) goto done; args[n++] = &ptr14; if (&ptr15 == &no_arg) goto done; args[n++] = &ptr15; if (&ptr16 == &no_arg) goto done; args[n++] = &ptr16; done: int consumed; int vec[kVecSize]; if (DoMatchImpl(*input, ANCHOR_START, &consumed, args, n, vec, kVecSize)) { input->remove_prefix(consumed); return true; } else { return false; } } bool RE::FindAndConsume(StringPiece* input, const Arg& ptr1, const Arg& ptr2, const Arg& ptr3, const Arg& ptr4, const Arg& ptr5, const Arg& ptr6, const Arg& ptr7, const Arg& ptr8, const Arg& ptr9, const Arg& ptr10, const Arg& ptr11, const Arg& ptr12, const Arg& ptr13, const Arg& ptr14, const Arg& ptr15, const Arg& ptr16) const { const Arg* args[kMaxArgs]; int n = 0; if (&ptr1 == &no_arg) goto done; args[n++] = &ptr1; if (&ptr2 == &no_arg) goto done; args[n++] = &ptr2; if (&ptr3 == &no_arg) goto done; args[n++] = &ptr3; if (&ptr4 == &no_arg) goto done; args[n++] = &ptr4; if (&ptr5 == &no_arg) goto done; args[n++] = &ptr5; if (&ptr6 == &no_arg) goto done; args[n++] = &ptr6; if (&ptr7 == &no_arg) goto done; args[n++] = &ptr7; if (&ptr8 == &no_arg) goto done; args[n++] = &ptr8; if (&ptr9 == &no_arg) goto done; args[n++] = &ptr9; if (&ptr10 == &no_arg) goto done; args[n++] = &ptr10; if (&ptr11 == &no_arg) goto done; args[n++] = &ptr11; if (&ptr12 == &no_arg) goto done; args[n++] = &ptr12; if (&ptr13 == &no_arg) goto done; args[n++] = &ptr13; if (&ptr14 == &no_arg) goto done; args[n++] = &ptr14; if (&ptr15 == &no_arg) goto done; args[n++] = &ptr15; if (&ptr16 == &no_arg) goto done; args[n++] = &ptr16; done: int consumed; int vec[kVecSize]; if (DoMatchImpl(*input, UNANCHORED, &consumed, args, n, vec, kVecSize)) { input->remove_prefix(consumed); return true; } else { return false; } } bool RE::Replace(const StringPiece& rewrite, string *str) const { int vec[kVecSize]; int matches = TryMatch(*str, 0, UNANCHORED, true, vec, kVecSize); if (matches == 0) return false; string s; if (!Rewrite(&s, rewrite, *str, vec, matches)) return false; assert(vec[0] >= 0); assert(vec[1] >= 0); str->replace(vec[0], vec[1] - vec[0], s); return true; } // Returns PCRE_NEWLINE_CRLF, PCRE_NEWLINE_CR, or PCRE_NEWLINE_LF. // Note that PCRE_NEWLINE_CRLF is defined to be P_N_CR | P_N_LF. // Modified by PH to add PCRE_NEWLINE_ANY and PCRE_NEWLINE_ANYCRLF. static int NewlineMode(int pcre_options) { // TODO: if we can make it threadsafe, cache this var int newline_mode = 0; /* if (newline_mode) return newline_mode; */ // do this once it's cached if (pcre_options & (PCRE_NEWLINE_CRLF|PCRE_NEWLINE_CR|PCRE_NEWLINE_LF| PCRE_NEWLINE_ANY|PCRE_NEWLINE_ANYCRLF)) { newline_mode = (pcre_options & (PCRE_NEWLINE_CRLF|PCRE_NEWLINE_CR|PCRE_NEWLINE_LF| PCRE_NEWLINE_ANY|PCRE_NEWLINE_ANYCRLF)); } else { int newline; pcre_config(PCRE_CONFIG_NEWLINE, &newline); if (newline == 10) newline_mode = PCRE_NEWLINE_LF; else if (newline == 13) newline_mode = PCRE_NEWLINE_CR; else if (newline == 3338) newline_mode = PCRE_NEWLINE_CRLF; else if (newline == -1) newline_mode = PCRE_NEWLINE_ANY; else if (newline == -2) newline_mode = PCRE_NEWLINE_ANYCRLF; else assert(NULL == "Unexpected return value from pcre_config(NEWLINE)"); } return newline_mode; } int RE::GlobalReplace(const StringPiece& rewrite, string *str) const { int count = 0; int vec[kVecSize]; string out; int start = 0; bool last_match_was_empty_string = false; while (start <= static_cast<int>(str->length())) { // If the previous match was for the empty string, we shouldn't // just match again: we'll match in the same way and get an // infinite loop. Instead, we do the match in a special way: // anchored -- to force another try at the same position -- // and with a flag saying that this time, ignore empty matches. // If this special match returns, that means there's a non-empty // match at this position as well, and we can continue. If not, // we do what perl does, and just advance by one. // Notice that perl prints '@@@' for this; // perl -le '$_ = "aa"; s/b*|aa/@/g; print' int matches; if (last_match_was_empty_string) { matches = TryMatch(*str, start, ANCHOR_START, false, vec, kVecSize); if (matches <= 0) { int matchend = start + 1; // advance one character. // If the current char is CR and we're in CRLF mode, skip LF too. // Note it's better to call pcre_fullinfo() than to examine // all_options(), since options_ could have changed bewteen // compile-time and now, but this is simpler and safe enough. // Modified by PH to add ANY and ANYCRLF. if (matchend < static_cast<int>(str->length()) && (*str)[start] == '\r' && (*str)[matchend] == '\n' && (NewlineMode(options_.all_options()) == PCRE_NEWLINE_CRLF || NewlineMode(options_.all_options()) == PCRE_NEWLINE_ANY || NewlineMode(options_.all_options()) == PCRE_NEWLINE_ANYCRLF)) { matchend++; } // We also need to advance more than one char if we're in utf8 mode. #ifdef SUPPORT_UTF8 if (options_.utf8()) { while (matchend < static_cast<int>(str->length()) && ((*str)[matchend] & 0xc0) == 0x80) matchend++; } #endif if (start < static_cast<int>(str->length())) out.append(*str, start, matchend - start); start = matchend; last_match_was_empty_string = false; continue; } } else { matches = TryMatch(*str, start, UNANCHORED, true, vec, kVecSize); if (matches <= 0) break; } int matchstart = vec[0], matchend = vec[1]; assert(matchstart >= start); assert(matchend >= matchstart); out.append(*str, start, matchstart - start); Rewrite(&out, rewrite, *str, vec, matches); start = matchend; count++; last_match_was_empty_string = (matchstart == matchend); } if (count == 0) return 0; if (start < static_cast<int>(str->length())) out.append(*str, start, str->length() - start); swap(out, *str); return count; } bool RE::Extract(const StringPiece& rewrite, const StringPiece& text, string *out) const { int vec[kVecSize]; int matches = TryMatch(text, 0, UNANCHORED, true, vec, kVecSize); if (matches == 0) return false; out->erase(); return Rewrite(out, rewrite, text, vec, matches); } /*static*/ string RE::QuoteMeta(const StringPiece& unquoted) { string result; // Escape any ascii character not in [A-Za-z_0-9]. // // Note that it's legal to escape a character even if it has no // special meaning in a regular expression -- so this function does // that. (This also makes it identical to the perl function of the // same name; see `perldoc -f quotemeta`.) The one exception is // escaping NUL: rather than doing backslash + NUL, like perl does, // we do '\0', because pcre itself doesn't take embedded NUL chars. for (int ii = 0; ii < unquoted.size(); ++ii) { // Note that using 'isalnum' here raises the benchmark time from // 32ns to 58ns: if (unquoted[ii] == '\0') { result += "\\0"; } else if ((unquoted[ii] < 'a' || unquoted[ii] > 'z') && (unquoted[ii] < 'A' || unquoted[ii] > 'Z') && (unquoted[ii] < '0' || unquoted[ii] > '9') && unquoted[ii] != '_' && // If this is the part of a UTF8 or Latin1 character, we need // to copy this byte without escaping. Experimentally this is // what works correctly with the regexp library. !(unquoted[ii] & 128)) { result += '\\'; result += unquoted[ii]; } else { result += unquoted[ii]; } } return result; } /***** Actual matching and rewriting code *****/ int RE::TryMatch(const StringPiece& text, int startpos, Anchor anchor, bool empty_ok, int *vec, int vecsize) const { pcre* re = (anchor == ANCHOR_BOTH) ? re_full_ : re_partial_; if (re == NULL) { //fprintf(stderr, "Matching against invalid re: %s\n", error_->c_str()); return 0; } pcre_extra extra = { 0, 0, 0, 0, 0, 0 }; if (options_.match_limit() > 0) { extra.flags |= PCRE_EXTRA_MATCH_LIMIT; extra.match_limit = options_.match_limit(); } if (options_.match_limit_recursion() > 0) { extra.flags |= PCRE_EXTRA_MATCH_LIMIT_RECURSION; extra.match_limit_recursion = options_.match_limit_recursion(); } // int options = 0; // Changed by PH as a result of bugzilla #1288 int options = (options_.all_options() & PCRE_NO_UTF8_CHECK); if (anchor != UNANCHORED) options |= PCRE_ANCHORED; if (!empty_ok) options |= PCRE_NOTEMPTY; int rc = pcre_exec(re, // The regular expression object &extra, (text.data() == NULL) ? "" : text.data(), text.size(), startpos, options, vec, vecsize); // Handle errors if (rc == PCRE_ERROR_NOMATCH) { return 0; } else if (rc < 0) { //fprintf(stderr, "Unexpected return code: %d when matching '%s'\n", // re, pattern_.c_str()); return 0; } else if (rc == 0) { // pcre_exec() returns 0 as a special case when the number of // capturing subpatterns exceeds the size of the vector. // When this happens, there is a match and the output vector // is filled, but we miss out on the positions of the extra subpatterns. rc = vecsize / 2; } return rc; } bool RE::DoMatchImpl(const StringPiece& text, Anchor anchor, int* consumed, const Arg* const* args, int n, int* vec, int vecsize) const { assert((1 + n) * 3 <= vecsize); // results + PCRE workspace int matches = TryMatch(text, 0, anchor, true, vec, vecsize); assert(matches >= 0); // TryMatch never returns negatives if (matches == 0) return false; *consumed = vec[1]; if (n == 0 || args == NULL) { // We are not interested in results return true; } if (NumberOfCapturingGroups() < n) { // RE has fewer capturing groups than number of arg pointers passed in return false; } // If we got here, we must have matched the whole pattern. // We do not need (can not do) any more checks on the value of 'matches' here // -- see the comment for TryMatch. for (int i = 0; i < n; i++) { const int start = vec[2*(i+1)]; const int limit = vec[2*(i+1)+1]; if (!args[i]->Parse(text.data() + start, limit-start)) { // TODO: Should we indicate what the error was? return false; } } return true; } bool RE::DoMatch(const StringPiece& text, Anchor anchor, int* consumed, const Arg* const args[], int n) const { assert(n >= 0); size_t const vecsize = (1 + n) * 3; // results + PCRE workspace // (as for kVecSize) int space[21]; // use stack allocation for small vecsize (common case) int* vec = vecsize <= 21 ? space : new int[vecsize]; bool retval = DoMatchImpl(text, anchor, consumed, args, n, vec, (int)vecsize); if (vec != space) delete [] vec; return retval; } bool RE::Rewrite(string *out, const StringPiece &rewrite, const StringPiece &text, int *vec, int veclen) const { for (const char *s = rewrite.data(), *end = s + rewrite.size(); s < end; s++) { int c = *s; if (c == '\\') { c = *++s; if (isdigit(c)) { int n = (c - '0'); if (n >= veclen) { //fprintf(stderr, requested group %d in regexp %.*s\n", // n, rewrite.size(), rewrite.data()); return false; } int start = vec[2 * n]; if (start >= 0) out->append(text.data() + start, vec[2 * n + 1] - start); } else if (c == '\\') { *out += '\\'; } else { //fprintf(stderr, "invalid rewrite pattern: %.*s\n", // rewrite.size(), rewrite.data()); return false; } } else { *out += c; } } return true; } // Return the number of capturing subpatterns, or -1 if the // regexp wasn't valid on construction. int RE::NumberOfCapturingGroups() const { if (re_partial_ == NULL) return -1; int result; int pcre_retval = pcre_fullinfo(re_partial_, // The regular expression object NULL, // We did not study the pattern PCRE_INFO_CAPTURECOUNT, &result); assert(pcre_retval == 0); return result; } /***** Parsers for various types *****/ bool Arg::parse_null(const char* str, int n, void* dest) { // We fail if somebody asked us to store into a non-NULL void* pointer return (dest == NULL); } bool Arg::parse_string(const char* str, int n, void* dest) { if (dest == NULL) return true; reinterpret_cast<string*>(dest)->assign(str, n); return true; } bool Arg::parse_stringpiece(const char* str, int n, void* dest) { if (dest == NULL) return true; reinterpret_cast<StringPiece*>(dest)->set(str, n); return true; } bool Arg::parse_char(const char* str, int n, void* dest) { if (n != 1) return false; if (dest == NULL) return true; *(reinterpret_cast<char*>(dest)) = str[0]; return true; } bool Arg::parse_uchar(const char* str, int n, void* dest) { if (n != 1) return false; if (dest == NULL) return true; *(reinterpret_cast<unsigned char*>(dest)) = str[0]; return true; } // Largest number spec that we are willing to parse static const int kMaxNumberLength = 32; // REQUIRES "buf" must have length at least kMaxNumberLength+1 // REQUIRES "n > 0" // Copies "str" into "buf" and null-terminates if necessary. // Returns one of: // a. "str" if no termination is needed // b. "buf" if the string was copied and null-terminated // c. "" if the input was invalid and has no hope of being parsed static const char* TerminateNumber(char* buf, const char* str, int n) { if ((n > 0) && isspace(*str)) { // We are less forgiving than the strtoxxx() routines and do not // allow leading spaces. return ""; } // See if the character right after the input text may potentially // look like a digit. if (isdigit(str[n]) || ((str[n] >= 'a') && (str[n] <= 'f')) || ((str[n] >= 'A') && (str[n] <= 'F'))) { if (n > kMaxNumberLength) return ""; // Input too big to be a valid number memcpy(buf, str, n); buf[n] = '\0'; return buf; } else { // We can parse right out of the supplied string, so return it. return str; } } bool Arg::parse_long_radix(const char* str, int n, void* dest, int radix) { if (n == 0) return false; char buf[kMaxNumberLength+1]; str = TerminateNumber(buf, str, n); char* end; errno = 0; long r = strtol(str, &end, radix); if (end != str + n) return false; // Leftover junk if (errno) return false; if (dest == NULL) return true; *(reinterpret_cast<long*>(dest)) = r; return true; } bool Arg::parse_ulong_radix(const char* str, int n, void* dest, int radix) { if (n == 0) return false; char buf[kMaxNumberLength+1]; str = TerminateNumber(buf, str, n); if (str[0] == '-') return false; // strtoul() on a negative number?! char* end; errno = 0; unsigned long r = strtoul(str, &end, radix); if (end != str + n) return false; // Leftover junk if (errno) return false; if (dest == NULL) return true; *(reinterpret_cast<unsigned long*>(dest)) = r; return true; } bool Arg::parse_short_radix(const char* str, int n, void* dest, int radix) { long r; if (!parse_long_radix(str, n, &r, radix)) return false; // Could not parse if (r < SHRT_MIN || r > SHRT_MAX) return false; // Out of range if (dest == NULL) return true; *(reinterpret_cast<short*>(dest)) = static_cast<short>(r); return true; } bool Arg::parse_ushort_radix(const char* str, int n, void* dest, int radix) { unsigned long r; if (!parse_ulong_radix(str, n, &r, radix)) return false; // Could not parse if (r > USHRT_MAX) return false; // Out of range if (dest == NULL) return true; *(reinterpret_cast<unsigned short*>(dest)) = static_cast<unsigned short>(r); return true; } bool Arg::parse_int_radix(const char* str, int n, void* dest, int radix) { long r; if (!parse_long_radix(str, n, &r, radix)) return false; // Could not parse if (r < INT_MIN || r > INT_MAX) return false; // Out of range if (dest == NULL) return true; *(reinterpret_cast<int*>(dest)) = r; return true; } bool Arg::parse_uint_radix(const char* str, int n, void* dest, int radix) { unsigned long r; if (!parse_ulong_radix(str, n, &r, radix)) return false; // Could not parse if (r > UINT_MAX) return false; // Out of range if (dest == NULL) return true; *(reinterpret_cast<unsigned int*>(dest)) = r; return true; } bool Arg::parse_longlong_radix(const char* str, int n, void* dest, int radix) { #ifndef HAVE_LONG_LONG return false; #else if (n == 0) return false; char buf[kMaxNumberLength+1]; str = TerminateNumber(buf, str, n); char* end; errno = 0; #if defined HAVE_STRTOQ long long r = strtoq(str, &end, radix); #elif defined HAVE_STRTOLL long long r = strtoll(str, &end, radix); #elif defined HAVE__STRTOI64 long long r = _strtoi64(str, &end, radix); #elif defined HAVE_STRTOIMAX long long r = strtoimax(str, &end, radix); #else #error parse_longlong_radix: cannot convert input to a long-long #endif if (end != str + n) return false; // Leftover junk if (errno) return false; if (dest == NULL) return true; *(reinterpret_cast<long long*>(dest)) = r; return true; #endif /* HAVE_LONG_LONG */ } bool Arg::parse_ulonglong_radix(const char* str, int n, void* dest, int radix) { #ifndef HAVE_UNSIGNED_LONG_LONG return false; #else if (n == 0) return false; char buf[kMaxNumberLength+1]; str = TerminateNumber(buf, str, n); if (str[0] == '-') return false; // strtoull() on a negative number?! char* end; errno = 0; #if defined HAVE_STRTOQ unsigned long long r = strtouq(str, &end, radix); #elif defined HAVE_STRTOLL unsigned long long r = strtoull(str, &end, radix); #elif defined HAVE__STRTOI64 unsigned long long r = _strtoui64(str, &end, radix); #elif defined HAVE_STRTOIMAX unsigned long long r = strtoumax(str, &end, radix); #else #error parse_ulonglong_radix: cannot convert input to a long-long #endif if (end != str + n) return false; // Leftover junk if (errno) return false; if (dest == NULL) return true; *(reinterpret_cast<unsigned long long*>(dest)) = r; return true; #endif /* HAVE_UNSIGNED_LONG_LONG */ } bool Arg::parse_double(const char* str, int n, void* dest) { if (n == 0) return false; static const int kMaxLength = 200; char buf[kMaxLength]; if (n >= kMaxLength) return false; memcpy(buf, str, n); buf[n] = '\0'; errno = 0; char* end; double r = strtod(buf, &end); if (end != buf + n) return false; // Leftover junk if (errno) return false; if (dest == NULL) return true; *(reinterpret_cast<double*>(dest)) = r; return true; } bool Arg::parse_float(const char* str, int n, void* dest) { double r; if (!parse_double(str, n, &r)) return false; if (dest == NULL) return true; *(reinterpret_cast<float*>(dest)) = static_cast<float>(r); return true; } #define DEFINE_INTEGER_PARSERS(name) \ bool Arg::parse_##name(const char* str, int n, void* dest) { \ return parse_##name##_radix(str, n, dest, 10); \ } \ bool Arg::parse_##name##_hex(const char* str, int n, void* dest) { \ return parse_##name##_radix(str, n, dest, 16); \ } \ bool Arg::parse_##name##_octal(const char* str, int n, void* dest) { \ return parse_##name##_radix(str, n, dest, 8); \ } \ bool Arg::parse_##name##_cradix(const char* str, int n, void* dest) { \ return parse_##name##_radix(str, n, dest, 0); \ } DEFINE_INTEGER_PARSERS(short) /* */ DEFINE_INTEGER_PARSERS(ushort) /* */ DEFINE_INTEGER_PARSERS(int) /* Don't use semicolons after these */ DEFINE_INTEGER_PARSERS(uint) /* statements because they can cause */ DEFINE_INTEGER_PARSERS(long) /* compiler warnings if the checking */ DEFINE_INTEGER_PARSERS(ulong) /* level is turned up high enough. */ DEFINE_INTEGER_PARSERS(longlong) /* */ DEFINE_INTEGER_PARSERS(ulonglong) /* */ #undef DEFINE_INTEGER_PARSERS } // namespace pcrecpp