amxmodx/tools/pcre/sljit/sljitNativeMIPS_common.c
Arkshine d4de0e6f1e Regex: Update PCRE to v8.35.
I was über lazy at first, so took libs from SM.
But actually it's quite easy to compile, so let's update to latest version \o/.
2014-07-06 12:23:21 +02:00

2043 lines
64 KiB
C

/*
* Stack-less Just-In-Time compiler
*
* Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Latest MIPS architecture. */
/* Automatically detect SLJIT_MIPS_32_64 */
SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void)
{
#if (defined SLJIT_MIPS_32_64 && SLJIT_MIPS_32_64)
return "MIPS V" SLJIT_CPUINFO;
#else
return "MIPS III" SLJIT_CPUINFO;
#endif
}
/* Length of an instruction word
Both for mips-32 and mips-64 */
typedef sljit_ui sljit_ins;
#define TMP_REG1 (SLJIT_NO_REGISTERS + 1)
#define TMP_REG2 (SLJIT_NO_REGISTERS + 2)
#define TMP_REG3 (SLJIT_NO_REGISTERS + 3)
/* For position independent code, t9 must contain the function address. */
#define PIC_ADDR_REG TMP_REG2
/* TMP_EREGs are used mainly for arithmetic operations. */
#define TMP_EREG1 15
#define TMP_EREG2 24
/* Floating point status register. */
#define FCSR_REG 31
/* Return address register. */
#define RETURN_ADDR_REG 31
/* Flags are keept in volatile registers. */
#define EQUAL_FLAG 7
/* And carry flag as well. */
#define ULESS_FLAG 10
#define UGREATER_FLAG 11
#define LESS_FLAG 12
#define GREATER_FLAG 13
#define OVERFLOW_FLAG 14
#define TMP_FREG1 (0)
#define TMP_FREG2 ((SLJIT_FLOAT_REG6 + 1) << 1)
static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 4] = {
0, 2, 5, 6, 3, 8, 16, 17, 18, 19, 20, 29, 4, 25, 9
};
/* --------------------------------------------------------------------- */
/* Instrucion forms */
/* --------------------------------------------------------------------- */
#define S(s) (reg_map[s] << 21)
#define T(t) (reg_map[t] << 16)
#define D(d) (reg_map[d] << 11)
/* Absolute registers. */
#define SA(s) ((s) << 21)
#define TA(t) ((t) << 16)
#define DA(d) ((d) << 11)
#define FT(t) ((t) << 16)
#define FS(s) ((s) << 11)
#define FD(d) ((d) << 6)
#define IMM(imm) ((imm) & 0xffff)
#define SH_IMM(imm) ((imm) << 6)
#define DR(dr) (reg_map[dr])
#define HI(opcode) ((opcode) << 26)
#define LO(opcode) (opcode)
/* S = (16 << 21) D = (17 << 21) */
#define FMT_SD (16 << 21)
#define ABS_fmt (HI(17) | FMT_SD | LO(5))
#define ADD_fmt (HI(17) | FMT_SD | LO(0))
#define ADDIU (HI(9))
#define ADDU (HI(0) | LO(33))
#define AND (HI(0) | LO(36))
#define ANDI (HI(12))
#define B (HI(4))
#define BAL (HI(1) | (17 << 16))
#define BC1F (HI(17) | (8 << 21))
#define BC1T (HI(17) | (8 << 21) | (1 << 16))
#define BEQ (HI(4))
#define BGEZ (HI(1) | (1 << 16))
#define BGTZ (HI(7))
#define BLEZ (HI(6))
#define BLTZ (HI(1) | (0 << 16))
#define BNE (HI(5))
#define BREAK (HI(0) | LO(13))
#define CFC1 (HI(17) | (2 << 21))
#define C_UN_fmt (HI(17) | FMT_SD | LO(49))
#define C_UEQ_fmt (HI(17) | FMT_SD | LO(51))
#define C_ULE_fmt (HI(17) | FMT_SD | LO(55))
#define C_ULT_fmt (HI(17) | FMT_SD | LO(53))
#define DADDIU (HI(25))
#define DADDU (HI(0) | LO(45))
#define DDIV (HI(0) | LO(30))
#define DDIVU (HI(0) | LO(31))
#define DIV (HI(0) | LO(26))
#define DIVU (HI(0) | LO(27))
#define DIV_fmt (HI(17) | FMT_SD | LO(3))
#define DMULT (HI(0) | LO(28))
#define DMULTU (HI(0) | LO(29))
#define DSLL (HI(0) | LO(56))
#define DSLL32 (HI(0) | LO(60))
#define DSLLV (HI(0) | LO(20))
#define DSRA (HI(0) | LO(59))
#define DSRA32 (HI(0) | LO(63))
#define DSRAV (HI(0) | LO(23))
#define DSRL (HI(0) | LO(58))
#define DSRL32 (HI(0) | LO(62))
#define DSRLV (HI(0) | LO(22))
#define DSUBU (HI(0) | LO(47))
#define J (HI(2))
#define JAL (HI(3))
#define JALR (HI(0) | LO(9))
#define JR (HI(0) | LO(8))
#define LD (HI(55))
#define LUI (HI(15))
#define LW (HI(35))
#define MFHI (HI(0) | LO(16))
#define MFLO (HI(0) | LO(18))
#define MOV_fmt (HI(17) | FMT_SD | LO(6))
#define MUL_fmt (HI(17) | FMT_SD | LO(2))
#define MULT (HI(0) | LO(24))
#define MULTU (HI(0) | LO(25))
#define NEG_fmt (HI(17) | FMT_SD | LO(7))
#define NOP (HI(0) | LO(0))
#define NOR (HI(0) | LO(39))
#define OR (HI(0) | LO(37))
#define ORI (HI(13))
#define SD (HI(63))
#define SLT (HI(0) | LO(42))
#define SLTI (HI(10))
#define SLTIU (HI(11))
#define SLTU (HI(0) | LO(43))
#define SLL (HI(0) | LO(0))
#define SLLV (HI(0) | LO(4))
#define SRL (HI(0) | LO(2))
#define SRLV (HI(0) | LO(6))
#define SRA (HI(0) | LO(3))
#define SRAV (HI(0) | LO(7))
#define SUB_fmt (HI(17) | FMT_SD | LO(1))
#define SUBU (HI(0) | LO(35))
#define SW (HI(43))
#define XOR (HI(0) | LO(38))
#define XORI (HI(14))
#if (defined SLJIT_MIPS_32_64 && SLJIT_MIPS_32_64)
#define CLZ (HI(28) | LO(32))
#define DCLZ (HI(28) | LO(36))
#define MUL (HI(28) | LO(2))
#define SEB (HI(31) | (16 << 6) | LO(32))
#define SEH (HI(31) | (24 << 6) | LO(32))
#endif
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
#define ADDU_W ADDU
#define ADDIU_W ADDIU
#define SLL_W SLL
#define SUBU_W SUBU
#else
#define ADDU_W DADDU
#define ADDIU_W DADDIU
#define SLL_W DSLL
#define SUBU_W DSUBU
#endif
#define SIMM_MAX (0x7fff)
#define SIMM_MIN (-0x8000)
#define UIMM_MAX (0xffff)
/* dest_reg is the absolute name of the register
Useful for reordering instructions in the delay slot. */
static sljit_si push_inst(struct sljit_compiler *compiler, sljit_ins ins, sljit_si delay_slot)
{
SLJIT_ASSERT(delay_slot == MOVABLE_INS || delay_slot >= UNMOVABLE_INS
|| delay_slot == ((ins >> 11) & 0x1f) || delay_slot == ((ins >> 16) & 0x1f));
sljit_ins *ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins));
FAIL_IF(!ptr);
*ptr = ins;
compiler->size++;
compiler->delay_slot = delay_slot;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_ins invert_branch(sljit_si flags)
{
return (flags & IS_BIT26_COND) ? (1 << 26) : (1 << 16);
}
static SLJIT_INLINE sljit_ins* detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
{
sljit_sw diff;
sljit_uw target_addr;
sljit_ins *inst;
sljit_ins saved_inst;
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
if (jump->flags & (SLJIT_REWRITABLE_JUMP | IS_CALL))
return code_ptr;
#else
if (jump->flags & SLJIT_REWRITABLE_JUMP)
return code_ptr;
#endif
if (jump->flags & JUMP_ADDR)
target_addr = jump->u.target;
else {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
target_addr = (sljit_uw)(code + jump->u.label->size);
}
inst = (sljit_ins*)jump->addr;
if (jump->flags & IS_COND)
inst--;
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
if (jump->flags & IS_CALL)
goto keep_address;
#endif
/* B instructions. */
if (jump->flags & IS_MOVABLE) {
diff = ((sljit_sw)target_addr - (sljit_sw)(inst)) >> 2;
if (diff <= SIMM_MAX && diff >= SIMM_MIN) {
jump->flags |= PATCH_B;
if (!(jump->flags & IS_COND)) {
inst[0] = inst[-1];
inst[-1] = (jump->flags & IS_JAL) ? BAL : B;
jump->addr -= sizeof(sljit_ins);
return inst;
}
saved_inst = inst[0];
inst[0] = inst[-1];
inst[-1] = saved_inst ^ invert_branch(jump->flags);
jump->addr -= 2 * sizeof(sljit_ins);
return inst;
}
}
else {
diff = ((sljit_sw)target_addr - (sljit_sw)(inst + 1)) >> 2;
if (diff <= SIMM_MAX && diff >= SIMM_MIN) {
jump->flags |= PATCH_B;
if (!(jump->flags & IS_COND)) {
inst[0] = (jump->flags & IS_JAL) ? BAL : B;
inst[1] = NOP;
return inst + 1;
}
inst[0] = inst[0] ^ invert_branch(jump->flags);
inst[1] = NOP;
jump->addr -= sizeof(sljit_ins);
return inst + 1;
}
}
if (jump->flags & IS_COND) {
if ((jump->flags & IS_MOVABLE) && (target_addr & ~0xfffffff) == ((jump->addr + 2 * sizeof(sljit_ins)) & ~0xfffffff)) {
jump->flags |= PATCH_J;
saved_inst = inst[0];
inst[0] = inst[-1];
inst[-1] = (saved_inst & 0xffff0000) | 3;
inst[1] = J;
inst[2] = NOP;
return inst + 2;
}
else if ((target_addr & ~0xfffffff) == ((jump->addr + 3 * sizeof(sljit_ins)) & ~0xfffffff)) {
jump->flags |= PATCH_J;
inst[0] = (inst[0] & 0xffff0000) | 3;
inst[1] = NOP;
inst[2] = J;
inst[3] = NOP;
jump->addr += sizeof(sljit_ins);
return inst + 3;
}
}
else {
/* J instuctions. */
if ((jump->flags & IS_MOVABLE) && (target_addr & ~0xfffffff) == (jump->addr & ~0xfffffff)) {
jump->flags |= PATCH_J;
inst[0] = inst[-1];
inst[-1] = (jump->flags & IS_JAL) ? JAL : J;
jump->addr -= sizeof(sljit_ins);
return inst;
}
if ((target_addr & ~0xfffffff) == ((jump->addr + sizeof(sljit_ins)) & ~0xfffffff)) {
jump->flags |= PATCH_J;
inst[0] = (jump->flags & IS_JAL) ? JAL : J;
inst[1] = NOP;
return inst + 1;
}
}
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
keep_address:
if (target_addr <= 0x7fffffff) {
jump->flags |= PATCH_ABS32;
if (jump->flags & IS_COND) {
inst[0] -= 4;
inst++;
}
inst[2] = inst[6];
inst[3] = inst[7];
return inst + 3;
}
if (target_addr <= 0x7fffffffffffl) {
jump->flags |= PATCH_ABS48;
if (jump->flags & IS_COND) {
inst[0] -= 2;
inst++;
}
inst[4] = inst[6];
inst[5] = inst[7];
return inst + 5;
}
#endif
return code_ptr;
}
#ifdef __GNUC__
static __attribute__ ((noinline)) void sljit_cache_flush(void* code, void* code_ptr)
{
SLJIT_CACHE_FLUSH(code, code_ptr);
}
#endif
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
struct sljit_memory_fragment *buf;
sljit_ins *code;
sljit_ins *code_ptr;
sljit_ins *buf_ptr;
sljit_ins *buf_end;
sljit_uw word_count;
sljit_uw addr;
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
CHECK_ERROR_PTR();
check_sljit_generate_code(compiler);
reverse_buf(compiler);
code = (sljit_ins*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
PTR_FAIL_WITH_EXEC_IF(code);
buf = compiler->buf;
code_ptr = code;
word_count = 0;
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
do {
buf_ptr = (sljit_ins*)buf->memory;
buf_end = buf_ptr + (buf->used_size >> 2);
do {
*code_ptr = *buf_ptr++;
SLJIT_ASSERT(!label || label->size >= word_count);
SLJIT_ASSERT(!jump || jump->addr >= word_count);
SLJIT_ASSERT(!const_ || const_->addr >= word_count);
/* These structures are ordered by their address. */
if (label && label->size == word_count) {
/* Just recording the address. */
label->addr = (sljit_uw)code_ptr;
label->size = code_ptr - code;
label = label->next;
}
if (jump && jump->addr == word_count) {
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
jump->addr = (sljit_uw)(code_ptr - 3);
#else
jump->addr = (sljit_uw)(code_ptr - 7);
#endif
code_ptr = detect_jump_type(jump, code_ptr, code);
jump = jump->next;
}
if (const_ && const_->addr == word_count) {
/* Just recording the address. */
const_->addr = (sljit_uw)code_ptr;
const_ = const_->next;
}
code_ptr ++;
word_count ++;
} while (buf_ptr < buf_end);
buf = buf->next;
} while (buf);
if (label && label->size == word_count) {
label->addr = (sljit_uw)code_ptr;
label->size = code_ptr - code;
label = label->next;
}
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
jump = compiler->jumps;
while (jump) {
do {
addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
buf_ptr = (sljit_ins*)jump->addr;
if (jump->flags & PATCH_B) {
addr = (sljit_sw)(addr - (jump->addr + sizeof(sljit_ins))) >> 2;
SLJIT_ASSERT((sljit_sw)addr <= SIMM_MAX && (sljit_sw)addr >= SIMM_MIN);
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | (addr & 0xffff);
break;
}
if (jump->flags & PATCH_J) {
SLJIT_ASSERT((addr & ~0xfffffff) == ((jump->addr + sizeof(sljit_ins)) & ~0xfffffff));
buf_ptr[0] |= (addr >> 2) & 0x03ffffff;
break;
}
/* Set the fields of immediate loads. */
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 16) & 0xffff);
buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | (addr & 0xffff);
#else
if (jump->flags & PATCH_ABS32) {
SLJIT_ASSERT(addr <= 0x7fffffff);
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 16) & 0xffff);
buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | (addr & 0xffff);
}
else if (jump->flags & PATCH_ABS48) {
SLJIT_ASSERT(addr <= 0x7fffffffffffl);
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 32) & 0xffff);
buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | ((addr >> 16) & 0xffff);
buf_ptr[3] = (buf_ptr[3] & 0xffff0000) | (addr & 0xffff);
}
else {
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 48) & 0xffff);
buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | ((addr >> 32) & 0xffff);
buf_ptr[3] = (buf_ptr[3] & 0xffff0000) | ((addr >> 16) & 0xffff);
buf_ptr[5] = (buf_ptr[5] & 0xffff0000) | (addr & 0xffff);
}
#endif
} while (0);
jump = jump->next;
}
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
#ifndef __GNUC__
SLJIT_CACHE_FLUSH(code, code_ptr);
#else
/* GCC workaround for invalid code generation with -O2. */
sljit_cache_flush(code, code_ptr);
#endif
return code;
}
/* --------------------------------------------------------------------- */
/* Entry, exit */
/* --------------------------------------------------------------------- */
/* Creates an index in data_transfer_insts array. */
#define LOAD_DATA 0x01
#define WORD_DATA 0x00
#define BYTE_DATA 0x02
#define HALF_DATA 0x04
#define INT_DATA 0x06
#define SIGNED_DATA 0x08
/* Separates integer and floating point registers */
#define GPR_REG 0x0f
#define DOUBLE_DATA 0x10
#define MEM_MASK 0x1f
#define WRITE_BACK 0x00020
#define ARG_TEST 0x00040
#define ALT_KEEP_CACHE 0x00080
#define CUMULATIVE_OP 0x00100
#define LOGICAL_OP 0x00200
#define IMM_OP 0x00400
#define SRC2_IMM 0x00800
#define UNUSED_DEST 0x01000
#define REG_DEST 0x02000
#define REG1_SOURCE 0x04000
#define REG2_SOURCE 0x08000
#define SLOW_SRC1 0x10000
#define SLOW_SRC2 0x20000
#define SLOW_DEST 0x40000
/* Only these flags are set. UNUSED_DEST is not set when no flags should be set. */
#define CHECK_FLAGS(list) \
(!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list))))
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
#define STACK_STORE SW
#define STACK_LOAD LW
#else
#define STACK_STORE SD
#define STACK_LOAD LD
#endif
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
#include "sljitNativeMIPS_32.c"
#else
#include "sljitNativeMIPS_64.c"
#endif
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size)
{
sljit_ins base;
CHECK_ERROR();
check_sljit_emit_enter(compiler, args, scratches, saveds, local_size);
compiler->scratches = scratches;
compiler->saveds = saveds;
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
compiler->logical_local_size = local_size;
#endif
local_size += (saveds + 1 + 4) * sizeof(sljit_sw);
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
local_size = (local_size + 15) & ~0xf;
#else
local_size = (local_size + 31) & ~0x1f;
#endif
compiler->local_size = local_size;
if (local_size <= SIMM_MAX) {
/* Frequent case. */
FAIL_IF(push_inst(compiler, ADDIU_W | S(SLJIT_LOCALS_REG) | T(SLJIT_LOCALS_REG) | IMM(-local_size), DR(SLJIT_LOCALS_REG)));
base = S(SLJIT_LOCALS_REG);
}
else {
FAIL_IF(load_immediate(compiler, DR(TMP_REG1), local_size));
FAIL_IF(push_inst(compiler, ADDU_W | S(SLJIT_LOCALS_REG) | TA(0) | D(TMP_REG2), DR(TMP_REG2)));
FAIL_IF(push_inst(compiler, SUBU_W | S(SLJIT_LOCALS_REG) | T(TMP_REG1) | D(SLJIT_LOCALS_REG), DR(SLJIT_LOCALS_REG)));
base = S(TMP_REG2);
local_size = 0;
}
FAIL_IF(push_inst(compiler, STACK_STORE | base | TA(RETURN_ADDR_REG) | IMM(local_size - 1 * (sljit_si)sizeof(sljit_sw)), MOVABLE_INS));
if (saveds >= 1)
FAIL_IF(push_inst(compiler, STACK_STORE | base | T(SLJIT_SAVED_REG1) | IMM(local_size - 2 * (sljit_si)sizeof(sljit_sw)), MOVABLE_INS));
if (saveds >= 2)
FAIL_IF(push_inst(compiler, STACK_STORE | base | T(SLJIT_SAVED_REG2) | IMM(local_size - 3 * (sljit_si)sizeof(sljit_sw)), MOVABLE_INS));
if (saveds >= 3)
FAIL_IF(push_inst(compiler, STACK_STORE | base | T(SLJIT_SAVED_REG3) | IMM(local_size - 4 * (sljit_si)sizeof(sljit_sw)), MOVABLE_INS));
if (saveds >= 4)
FAIL_IF(push_inst(compiler, STACK_STORE | base | T(SLJIT_SAVED_EREG1) | IMM(local_size - 5 * (sljit_si)sizeof(sljit_sw)), MOVABLE_INS));
if (saveds >= 5)
FAIL_IF(push_inst(compiler, STACK_STORE | base | T(SLJIT_SAVED_EREG2) | IMM(local_size - 6 * (sljit_si)sizeof(sljit_sw)), MOVABLE_INS));
if (args >= 1)
FAIL_IF(push_inst(compiler, ADDU_W | SA(4) | TA(0) | D(SLJIT_SAVED_REG1), DR(SLJIT_SAVED_REG1)));
if (args >= 2)
FAIL_IF(push_inst(compiler, ADDU_W | SA(5) | TA(0) | D(SLJIT_SAVED_REG2), DR(SLJIT_SAVED_REG2)));
if (args >= 3)
FAIL_IF(push_inst(compiler, ADDU_W | SA(6) | TA(0) | D(SLJIT_SAVED_REG3), DR(SLJIT_SAVED_REG3)));
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size)
{
CHECK_ERROR_VOID();
check_sljit_set_context(compiler, args, scratches, saveds, local_size);
compiler->scratches = scratches;
compiler->saveds = saveds;
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
compiler->logical_local_size = local_size;
#endif
local_size += (saveds + 1 + 4) * sizeof(sljit_sw);
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
compiler->local_size = (local_size + 15) & ~0xf;
#else
compiler->local_size = (local_size + 31) & ~0x1f;
#endif
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
{
sljit_si local_size;
sljit_ins base;
CHECK_ERROR();
check_sljit_emit_return(compiler, op, src, srcw);
FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
local_size = compiler->local_size;
if (local_size <= SIMM_MAX)
base = S(SLJIT_LOCALS_REG);
else {
FAIL_IF(load_immediate(compiler, DR(TMP_REG1), local_size));
FAIL_IF(push_inst(compiler, ADDU_W | S(SLJIT_LOCALS_REG) | T(TMP_REG1) | D(TMP_REG1), DR(TMP_REG1)));
base = S(TMP_REG1);
local_size = 0;
}
FAIL_IF(push_inst(compiler, STACK_LOAD | base | TA(RETURN_ADDR_REG) | IMM(local_size - 1 * (sljit_si)sizeof(sljit_sw)), RETURN_ADDR_REG));
if (compiler->saveds >= 5)
FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(SLJIT_SAVED_EREG2) | IMM(local_size - 6 * (sljit_si)sizeof(sljit_sw)), DR(SLJIT_SAVED_EREG2)));
if (compiler->saveds >= 4)
FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(SLJIT_SAVED_EREG1) | IMM(local_size - 5 * (sljit_si)sizeof(sljit_sw)), DR(SLJIT_SAVED_EREG1)));
if (compiler->saveds >= 3)
FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(SLJIT_SAVED_REG3) | IMM(local_size - 4 * (sljit_si)sizeof(sljit_sw)), DR(SLJIT_SAVED_REG3)));
if (compiler->saveds >= 2)
FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(SLJIT_SAVED_REG2) | IMM(local_size - 3 * (sljit_si)sizeof(sljit_sw)), DR(SLJIT_SAVED_REG2)));
if (compiler->saveds >= 1)
FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(SLJIT_SAVED_REG1) | IMM(local_size - 2 * (sljit_si)sizeof(sljit_sw)), DR(SLJIT_SAVED_REG1)));
FAIL_IF(push_inst(compiler, JR | SA(RETURN_ADDR_REG), UNMOVABLE_INS));
if (compiler->local_size <= SIMM_MAX)
return push_inst(compiler, ADDIU_W | S(SLJIT_LOCALS_REG) | T(SLJIT_LOCALS_REG) | IMM(compiler->local_size), UNMOVABLE_INS);
else
return push_inst(compiler, ADDU_W | S(TMP_REG1) | TA(0) | D(SLJIT_LOCALS_REG), UNMOVABLE_INS);
}
#undef STACK_STORE
#undef STACK_LOAD
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
#define ARCH_32_64(a, b) a
#else
#define ARCH_32_64(a, b) b
#endif
static SLJIT_CONST sljit_ins data_transfer_insts[16 + 4] = {
/* u w s */ ARCH_32_64(HI(43) /* sw */, HI(63) /* sd */),
/* u w l */ ARCH_32_64(HI(35) /* lw */, HI(55) /* ld */),
/* u b s */ HI(40) /* sb */,
/* u b l */ HI(36) /* lbu */,
/* u h s */ HI(41) /* sh */,
/* u h l */ HI(37) /* lhu */,
/* u i s */ HI(43) /* sw */,
/* u i l */ ARCH_32_64(HI(35) /* lw */, HI(39) /* lwu */),
/* s w s */ ARCH_32_64(HI(43) /* sw */, HI(63) /* sd */),
/* s w l */ ARCH_32_64(HI(35) /* lw */, HI(55) /* ld */),
/* s b s */ HI(40) /* sb */,
/* s b l */ HI(32) /* lb */,
/* s h s */ HI(41) /* sh */,
/* s h l */ HI(33) /* lh */,
/* s i s */ HI(43) /* sw */,
/* s i l */ HI(35) /* lw */,
/* d s */ HI(61) /* sdc1 */,
/* d l */ HI(53) /* ldc1 */,
/* s s */ HI(57) /* swc1 */,
/* s l */ HI(49) /* lwc1 */,
};
#undef ARCH_32_64
/* reg_ar is an absoulute register! */
/* Can perform an operation using at most 1 instruction. */
static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
{
SLJIT_ASSERT(arg & SLJIT_MEM);
if ((!(flags & WRITE_BACK) || !(arg & REG_MASK)) && !(arg & OFFS_REG_MASK) && argw <= SIMM_MAX && argw >= SIMM_MIN) {
/* Works for both absoulte and relative addresses. */
if (SLJIT_UNLIKELY(flags & ARG_TEST))
return 1;
FAIL_IF(push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(arg & REG_MASK)
| TA(reg_ar) | IMM(argw), ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA)) ? reg_ar : MOVABLE_INS));
return -1;
}
return 0;
}
/* See getput_arg below.
Note: can_cache is called only for binary operators. Those
operators always uses word arguments without write back. */
static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));
/* Simple operation except for updates. */
if (arg & OFFS_REG_MASK) {
argw &= 0x3;
next_argw &= 0x3;
if (argw && argw == next_argw && (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK)))
return 1;
return 0;
}
if (arg == next_arg) {
if (((next_argw - argw) <= SIMM_MAX && (next_argw - argw) >= SIMM_MIN))
return 1;
return 0;
}
return 0;
}
/* Emit the necessary instructions. See can_cache above. */
static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
sljit_si tmp_ar, base, delay_slot;
SLJIT_ASSERT(arg & SLJIT_MEM);
if (!(next_arg & SLJIT_MEM)) {
next_arg = 0;
next_argw = 0;
}
if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA)) {
tmp_ar = reg_ar;
delay_slot = reg_ar;
} else {
tmp_ar = DR(TMP_REG1);
delay_slot = MOVABLE_INS;
}
base = arg & REG_MASK;
if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
argw &= 0x3;
if ((flags & WRITE_BACK) && reg_ar == DR(base)) {
SLJIT_ASSERT(!(flags & LOAD_DATA) && DR(TMP_REG1) != reg_ar);
FAIL_IF(push_inst(compiler, ADDU_W | SA(reg_ar) | TA(0) | D(TMP_REG1), DR(TMP_REG1)));
reg_ar = DR(TMP_REG1);
}
/* Using the cache. */
if (argw == compiler->cache_argw) {
if (!(flags & WRITE_BACK)) {
if (arg == compiler->cache_arg)
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot);
if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
if (arg == next_arg && argw == (next_argw & 0x3)) {
compiler->cache_arg = arg;
compiler->cache_argw = argw;
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | D(TMP_REG3), DR(TMP_REG3)));
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot);
}
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | DA(tmp_ar), tmp_ar));
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | SA(tmp_ar) | TA(reg_ar), delay_slot);
}
}
else {
if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | D(base), DR(base)));
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(base) | TA(reg_ar), delay_slot);
}
}
}
if (SLJIT_UNLIKELY(argw)) {
compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
compiler->cache_argw = argw;
FAIL_IF(push_inst(compiler, SLL_W | T(OFFS_REG(arg)) | D(TMP_REG3) | SH_IMM(argw), DR(TMP_REG3)));
}
if (!(flags & WRITE_BACK)) {
if (arg == next_arg && argw == (next_argw & 0x3)) {
compiler->cache_arg = arg;
compiler->cache_argw = argw;
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(!argw ? OFFS_REG(arg) : TMP_REG3) | D(TMP_REG3), DR(TMP_REG3)));
tmp_ar = DR(TMP_REG3);
}
else
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(!argw ? OFFS_REG(arg) : TMP_REG3) | DA(tmp_ar), tmp_ar));
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | SA(tmp_ar) | TA(reg_ar), delay_slot);
}
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(!argw ? OFFS_REG(arg) : TMP_REG3) | D(base), DR(base)));
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(base) | TA(reg_ar), delay_slot);
}
if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) {
/* Update only applies if a base register exists. */
if (reg_ar == DR(base)) {
SLJIT_ASSERT(!(flags & LOAD_DATA) && DR(TMP_REG1) != reg_ar);
if (argw <= SIMM_MAX && argw >= SIMM_MIN) {
FAIL_IF(push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(base) | TA(reg_ar) | IMM(argw), MOVABLE_INS));
if (argw)
return push_inst(compiler, ADDIU_W | S(base) | T(base) | IMM(argw), DR(base));
return SLJIT_SUCCESS;
}
FAIL_IF(push_inst(compiler, ADDU_W | SA(reg_ar) | TA(0) | D(TMP_REG1), DR(TMP_REG1)));
reg_ar = DR(TMP_REG1);
}
if (argw <= SIMM_MAX && argw >= SIMM_MIN) {
if (argw)
FAIL_IF(push_inst(compiler, ADDIU_W | S(base) | T(base) | IMM(argw), DR(base)));
}
else {
if (compiler->cache_arg == SLJIT_MEM && argw - compiler->cache_argw <= SIMM_MAX && argw - compiler->cache_argw >= SIMM_MIN) {
if (argw != compiler->cache_argw) {
FAIL_IF(push_inst(compiler, ADDIU_W | S(TMP_REG3) | T(TMP_REG3) | IMM(argw - compiler->cache_argw), DR(TMP_REG3)));
compiler->cache_argw = argw;
}
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | D(base), DR(base)));
}
else {
compiler->cache_arg = SLJIT_MEM;
compiler->cache_argw = argw;
FAIL_IF(load_immediate(compiler, DR(TMP_REG3), argw));
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | D(base), DR(base)));
}
}
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(base) | TA(reg_ar), delay_slot);
}
if (compiler->cache_arg == arg && argw - compiler->cache_argw <= SIMM_MAX && argw - compiler->cache_argw >= SIMM_MIN) {
if (argw != compiler->cache_argw) {
FAIL_IF(push_inst(compiler, ADDIU_W | S(TMP_REG3) | T(TMP_REG3) | IMM(argw - compiler->cache_argw), DR(TMP_REG3)));
compiler->cache_argw = argw;
}
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot);
}
if (compiler->cache_arg == SLJIT_MEM && argw - compiler->cache_argw <= SIMM_MAX && argw - compiler->cache_argw >= SIMM_MIN) {
if (argw != compiler->cache_argw)
FAIL_IF(push_inst(compiler, ADDIU_W | S(TMP_REG3) | T(TMP_REG3) | IMM(argw - compiler->cache_argw), DR(TMP_REG3)));
}
else {
compiler->cache_arg = SLJIT_MEM;
FAIL_IF(load_immediate(compiler, DR(TMP_REG3), argw));
}
compiler->cache_argw = argw;
if (!base)
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot);
if (arg == next_arg && next_argw - argw <= SIMM_MAX && next_argw - argw >= SIMM_MIN) {
compiler->cache_arg = arg;
FAIL_IF(push_inst(compiler, ADDU_W | S(TMP_REG3) | T(base) | D(TMP_REG3), DR(TMP_REG3)));
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot);
}
FAIL_IF(push_inst(compiler, ADDU_W | S(TMP_REG3) | T(base) | DA(tmp_ar), tmp_ar));
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | SA(tmp_ar) | TA(reg_ar), delay_slot);
}
static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
{
if (getput_arg_fast(compiler, flags, reg_ar, arg, argw))
return compiler->error;
compiler->cache_arg = 0;
compiler->cache_argw = 0;
return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0);
}
static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
{
if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
return compiler->error;
return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}
static sljit_si emit_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
/* arg1 goes to TMP_REG1 or src reg
arg2 goes to TMP_REG2, imm or src reg
TMP_REG3 can be used for caching
result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
sljit_si dst_r = TMP_REG2;
sljit_si src1_r;
sljit_sw src2_r = 0;
sljit_si sugg_src2_r = TMP_REG2;
if (!(flags & ALT_KEEP_CACHE)) {
compiler->cache_arg = 0;
compiler->cache_argw = 0;
}
if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
return SLJIT_SUCCESS;
if (GET_FLAGS(op))
flags |= UNUSED_DEST;
}
else if (FAST_IS_REG(dst)) {
dst_r = dst;
flags |= REG_DEST;
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
sugg_src2_r = dst_r;
}
else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, DR(TMP_REG1), dst, dstw))
flags |= SLOW_DEST;
if (flags & IMM_OP) {
if ((src2 & SLJIT_IMM) && src2w) {
if ((!(flags & LOGICAL_OP) && (src2w <= SIMM_MAX && src2w >= SIMM_MIN))
|| ((flags & LOGICAL_OP) && !(src2w & ~UIMM_MAX))) {
flags |= SRC2_IMM;
src2_r = src2w;
}
}
if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
if ((!(flags & LOGICAL_OP) && (src1w <= SIMM_MAX && src1w >= SIMM_MIN))
|| ((flags & LOGICAL_OP) && !(src1w & ~UIMM_MAX))) {
flags |= SRC2_IMM;
src2_r = src1w;
/* And swap arguments. */
src1 = src2;
src1w = src2w;
src2 = SLJIT_IMM;
/* src2w = src2_r unneeded. */
}
}
}
/* Source 1. */
if (FAST_IS_REG(src1)) {
src1_r = src1;
flags |= REG1_SOURCE;
}
else if (src1 & SLJIT_IMM) {
if (src1w) {
FAIL_IF(load_immediate(compiler, DR(TMP_REG1), src1w));
src1_r = TMP_REG1;
}
else
src1_r = 0;
}
else {
if (getput_arg_fast(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w))
FAIL_IF(compiler->error);
else
flags |= SLOW_SRC1;
src1_r = TMP_REG1;
}
/* Source 2. */
if (FAST_IS_REG(src2)) {
src2_r = src2;
flags |= REG2_SOURCE;
if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
dst_r = src2_r;
}
else if (src2 & SLJIT_IMM) {
if (!(flags & SRC2_IMM)) {
if (src2w) {
FAIL_IF(load_immediate(compiler, DR(sugg_src2_r), src2w));
src2_r = sugg_src2_r;
}
else {
src2_r = 0;
if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_SI) && (dst & SLJIT_MEM))
dst_r = 0;
}
}
}
else {
if (getput_arg_fast(compiler, flags | LOAD_DATA, DR(sugg_src2_r), src2, src2w))
FAIL_IF(compiler->error);
else
flags |= SLOW_SRC2;
src2_r = sugg_src2_r;
}
if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
SLJIT_ASSERT(src2_r == TMP_REG2);
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG2), src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w, dst, dstw));
}
else {
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG2), src2, src2w, dst, dstw));
}
}
else if (flags & SLOW_SRC1)
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w, dst, dstw));
else if (flags & SLOW_SRC2)
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(sugg_src2_r), src2, src2w, dst, dstw));
FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
if (dst & SLJIT_MEM) {
if (!(flags & SLOW_DEST)) {
getput_arg_fast(compiler, flags, DR(dst_r), dst, dstw);
return compiler->error;
}
return getput_arg(compiler, flags, DR(dst_r), dst, dstw, 0, 0);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op)
{
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
sljit_si int_op = op & SLJIT_INT_OP;
#endif
CHECK_ERROR();
check_sljit_emit_op0(compiler, op);
op = GET_OPCODE(op);
switch (op) {
case SLJIT_BREAKPOINT:
return push_inst(compiler, BREAK, UNMOVABLE_INS);
case SLJIT_NOP:
return push_inst(compiler, NOP, UNMOVABLE_INS);
case SLJIT_UMUL:
case SLJIT_SMUL:
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
FAIL_IF(push_inst(compiler, (op == SLJIT_UMUL ? DMULTU : DMULT) | S(SLJIT_SCRATCH_REG1) | T(SLJIT_SCRATCH_REG2), MOVABLE_INS));
#else
FAIL_IF(push_inst(compiler, (op == SLJIT_UMUL ? MULTU : MULT) | S(SLJIT_SCRATCH_REG1) | T(SLJIT_SCRATCH_REG2), MOVABLE_INS));
#endif
FAIL_IF(push_inst(compiler, MFLO | D(SLJIT_SCRATCH_REG1), DR(SLJIT_SCRATCH_REG1)));
return push_inst(compiler, MFHI | D(SLJIT_SCRATCH_REG2), DR(SLJIT_SCRATCH_REG2));
case SLJIT_UDIV:
case SLJIT_SDIV:
#if !(defined SLJIT_MIPS_32_64 && SLJIT_MIPS_32_64)
FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
#endif
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
if (int_op)
FAIL_IF(push_inst(compiler, (op == SLJIT_UDIV ? DIVU : DIV) | S(SLJIT_SCRATCH_REG1) | T(SLJIT_SCRATCH_REG2), MOVABLE_INS));
else
FAIL_IF(push_inst(compiler, (op == SLJIT_UDIV ? DDIVU : DDIV) | S(SLJIT_SCRATCH_REG1) | T(SLJIT_SCRATCH_REG2), MOVABLE_INS));
#else
FAIL_IF(push_inst(compiler, (op == SLJIT_UDIV ? DIVU : DIV) | S(SLJIT_SCRATCH_REG1) | T(SLJIT_SCRATCH_REG2), MOVABLE_INS));
#endif
FAIL_IF(push_inst(compiler, MFLO | D(SLJIT_SCRATCH_REG1), DR(SLJIT_SCRATCH_REG1)));
return push_inst(compiler, MFHI | D(SLJIT_SCRATCH_REG2), DR(SLJIT_SCRATCH_REG2));
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# define flags 0
#else
sljit_si flags = 0;
#endif
CHECK_ERROR();
check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
if ((op & SLJIT_INT_OP) && GET_OPCODE(op) >= SLJIT_NOT) {
flags |= INT_DATA | SIGNED_DATA;
if (src & SLJIT_IMM)
srcw = (sljit_si)srcw;
}
#endif
switch (GET_OPCODE(op)) {
case SLJIT_MOV:
case SLJIT_MOV_P:
return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOV_UI:
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
return emit_op(compiler, SLJIT_MOV_UI, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
#else
return emit_op(compiler, SLJIT_MOV_UI, INT_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ui)srcw : srcw);
#endif
case SLJIT_MOV_SI:
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
#else
return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_si)srcw : srcw);
#endif
case SLJIT_MOV_UB:
return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub)srcw : srcw);
case SLJIT_MOV_SB:
return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb)srcw : srcw);
case SLJIT_MOV_UH:
return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh)srcw : srcw);
case SLJIT_MOV_SH:
return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh)srcw : srcw);
case SLJIT_MOVU:
case SLJIT_MOVU_P:
return emit_op(compiler, SLJIT_MOV, WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOVU_UI:
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
return emit_op(compiler, SLJIT_MOV_UI, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
#else
return emit_op(compiler, SLJIT_MOV_UI, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ui)srcw : srcw);
#endif
case SLJIT_MOVU_SI:
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
#else
return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_si)srcw : srcw);
#endif
case SLJIT_MOVU_UB:
return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub)srcw : srcw);
case SLJIT_MOVU_SB:
return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb)srcw : srcw);
case SLJIT_MOVU_UH:
return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh)srcw : srcw);
case SLJIT_MOVU_SH:
return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh)srcw : srcw);
case SLJIT_NOT:
return emit_op(compiler, op, flags, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_NEG:
return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), flags | IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);
case SLJIT_CLZ:
return emit_op(compiler, op, flags, dst, dstw, TMP_REG1, 0, src, srcw);
}
return SLJIT_SUCCESS;
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# undef flags
#endif
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# define flags 0
#else
sljit_si flags = 0;
#endif
CHECK_ERROR();
check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
if (op & SLJIT_INT_OP) {
flags |= INT_DATA | SIGNED_DATA;
if (src1 & SLJIT_IMM)
src1w = (sljit_si)src1w;
if (src2 & SLJIT_IMM)
src2w = (sljit_si)src2w;
}
#endif
switch (GET_OPCODE(op)) {
case SLJIT_ADD:
case SLJIT_ADDC:
return emit_op(compiler, op, flags | CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUB:
case SLJIT_SUBC:
return emit_op(compiler, op, flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_MUL:
return emit_op(compiler, op, flags | CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_AND:
case SLJIT_OR:
case SLJIT_XOR:
return emit_op(compiler, op, flags | CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SHL:
case SLJIT_LSHR:
case SLJIT_ASHR:
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
if (src2 & SLJIT_IMM)
src2w &= 0x1f;
#else
if (src2 & SLJIT_IMM) {
if (op & SLJIT_INT_OP)
src2w &= 0x1f;
else
src2w &= 0x3f;
}
#endif
return emit_op(compiler, op, flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
}
return SLJIT_SUCCESS;
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# undef flags
#endif
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg)
{
check_sljit_get_register_index(reg);
return reg_map[reg];
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg)
{
check_sljit_get_float_register_index(reg);
return reg << 1;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_si size)
{
CHECK_ERROR();
check_sljit_emit_op_custom(compiler, instruction, size);
SLJIT_ASSERT(size == 4);
return push_inst(compiler, *(sljit_ins*)instruction, UNMOVABLE_INS);
}
/* --------------------------------------------------------------------- */
/* Floating point operators */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
{
#ifdef SLJIT_IS_FPU_AVAILABLE
return SLJIT_IS_FPU_AVAILABLE;
#elif defined(__GNUC__)
sljit_sw fir;
asm ("cfc1 %0, $0" : "=r"(fir));
return (fir >> 22) & 0x1;
#else
#error "FIR check is not implemented for this architecture"
#endif
}
#define FLOAT_DATA(op) (DOUBLE_DATA | ((op & SLJIT_SINGLE_OP) >> 7))
#define FMT(op) (((op & SLJIT_SINGLE_OP) ^ SLJIT_SINGLE_OP) << (21 - 8))
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
sljit_si dst_fr;
CHECK_ERROR();
check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw);
SLJIT_COMPILE_ASSERT((SLJIT_SINGLE_OP == 0x100) && !(DOUBLE_DATA & 0x2), float_transfer_bit_error);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
if (GET_OPCODE(op) == SLJIT_CMPD) {
if (dst & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, dst, dstw, src, srcw));
dst = TMP_FREG1;
}
else
dst <<= 1;
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src, srcw, 0, 0));
src = TMP_FREG2;
}
else
src <<= 1;
/* src and dst are swapped. */
if (op & SLJIT_SET_E) {
FAIL_IF(push_inst(compiler, C_UEQ_fmt | FMT(op) | FT(src) | FS(dst), UNMOVABLE_INS));
FAIL_IF(push_inst(compiler, CFC1 | TA(EQUAL_FLAG) | DA(FCSR_REG), EQUAL_FLAG));
FAIL_IF(push_inst(compiler, SRL | TA(EQUAL_FLAG) | DA(EQUAL_FLAG) | SH_IMM(23), EQUAL_FLAG));
FAIL_IF(push_inst(compiler, ANDI | SA(EQUAL_FLAG) | TA(EQUAL_FLAG) | IMM(1), EQUAL_FLAG));
}
if (op & SLJIT_SET_S) {
/* Mixing the instructions for the two checks. */
FAIL_IF(push_inst(compiler, C_ULT_fmt | FMT(op) | FT(src) | FS(dst), UNMOVABLE_INS));
FAIL_IF(push_inst(compiler, CFC1 | TA(ULESS_FLAG) | DA(FCSR_REG), ULESS_FLAG));
FAIL_IF(push_inst(compiler, C_ULT_fmt | FMT(op) | FT(dst) | FS(src), UNMOVABLE_INS));
FAIL_IF(push_inst(compiler, SRL | TA(ULESS_FLAG) | DA(ULESS_FLAG) | SH_IMM(23), ULESS_FLAG));
FAIL_IF(push_inst(compiler, ANDI | SA(ULESS_FLAG) | TA(ULESS_FLAG) | IMM(1), ULESS_FLAG));
FAIL_IF(push_inst(compiler, CFC1 | TA(UGREATER_FLAG) | DA(FCSR_REG), UGREATER_FLAG));
FAIL_IF(push_inst(compiler, SRL | TA(UGREATER_FLAG) | DA(UGREATER_FLAG) | SH_IMM(23), UGREATER_FLAG));
FAIL_IF(push_inst(compiler, ANDI | SA(UGREATER_FLAG) | TA(UGREATER_FLAG) | IMM(1), UGREATER_FLAG));
}
return push_inst(compiler, C_UN_fmt | FMT(op) | FT(src) | FS(dst), FCSR_FCC);
}
dst_fr = FAST_IS_REG(dst) ? (dst << 1) : TMP_FREG1;
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, dst_fr, src, srcw, dst, dstw));
src = dst_fr;
}
else
src <<= 1;
switch (GET_OPCODE(op)) {
case SLJIT_MOVD:
if (src != dst_fr && dst_fr != TMP_FREG1)
FAIL_IF(push_inst(compiler, MOV_fmt | FMT(op) | FS(src) | FD(dst_fr), MOVABLE_INS));
break;
case SLJIT_NEGD:
FAIL_IF(push_inst(compiler, NEG_fmt | FMT(op) | FS(src) | FD(dst_fr), MOVABLE_INS));
break;
case SLJIT_ABSD:
FAIL_IF(push_inst(compiler, ABS_fmt | FMT(op) | FS(src) | FD(dst_fr), MOVABLE_INS));
break;
}
if (dst_fr == TMP_FREG1) {
if (GET_OPCODE(op) == SLJIT_MOVD)
dst_fr = src;
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), dst_fr, dst, dstw, 0, 0));
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
sljit_si dst_fr, flags = 0;
CHECK_ERROR();
check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
dst_fr = FAST_IS_REG(dst) ? (dst << 1) : TMP_FREG2;
if (src1 & SLJIT_MEM) {
if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w)) {
FAIL_IF(compiler->error);
src1 = TMP_FREG1;
} else
flags |= SLOW_SRC1;
}
else
src1 <<= 1;
if (src2 & SLJIT_MEM) {
if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w)) {
FAIL_IF(compiler->error);
src2 = TMP_FREG2;
} else
flags |= SLOW_SRC2;
}
else
src2 <<= 1;
if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
}
else {
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));
}
}
else if (flags & SLOW_SRC1)
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
else if (flags & SLOW_SRC2)
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));
if (flags & SLOW_SRC1)
src1 = TMP_FREG1;
if (flags & SLOW_SRC2)
src2 = TMP_FREG2;
switch (GET_OPCODE(op)) {
case SLJIT_ADDD:
FAIL_IF(push_inst(compiler, ADD_fmt | FMT(op) | FT(src2) | FS(src1) | FD(dst_fr), MOVABLE_INS));
break;
case SLJIT_SUBD:
FAIL_IF(push_inst(compiler, SUB_fmt | FMT(op) | FT(src2) | FS(src1) | FD(dst_fr), MOVABLE_INS));
break;
case SLJIT_MULD:
FAIL_IF(push_inst(compiler, MUL_fmt | FMT(op) | FT(src2) | FS(src1) | FD(dst_fr), MOVABLE_INS));
break;
case SLJIT_DIVD:
FAIL_IF(push_inst(compiler, DIV_fmt | FMT(op) | FT(src2) | FS(src1) | FD(dst_fr), MOVABLE_INS));
break;
}
if (dst_fr == TMP_FREG2)
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG2, dst, dstw, 0, 0));
return SLJIT_SUCCESS;
}
/* --------------------------------------------------------------------- */
/* Other instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
{
CHECK_ERROR();
check_sljit_emit_fast_enter(compiler, dst, dstw);
ADJUST_LOCAL_OFFSET(dst, dstw);
/* For UNUSED dst. Uncommon, but possible. */
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
if (FAST_IS_REG(dst))
return push_inst(compiler, ADDU_W | SA(RETURN_ADDR_REG) | TA(0) | D(dst), DR(dst));
/* Memory. */
return emit_op_mem(compiler, WORD_DATA, RETURN_ADDR_REG, dst, dstw);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
{
CHECK_ERROR();
check_sljit_emit_fast_return(compiler, src, srcw);
ADJUST_LOCAL_OFFSET(src, srcw);
if (FAST_IS_REG(src))
FAIL_IF(push_inst(compiler, ADDU_W | S(src) | TA(0) | DA(RETURN_ADDR_REG), RETURN_ADDR_REG));
else if (src & SLJIT_MEM)
FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RETURN_ADDR_REG, src, srcw));
else if (src & SLJIT_IMM)
FAIL_IF(load_immediate(compiler, RETURN_ADDR_REG, srcw));
FAIL_IF(push_inst(compiler, JR | SA(RETURN_ADDR_REG), UNMOVABLE_INS));
return push_inst(compiler, NOP, UNMOVABLE_INS);
}
/* --------------------------------------------------------------------- */
/* Conditional instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
struct sljit_label *label;
CHECK_ERROR_PTR();
check_sljit_emit_label(compiler);
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
compiler->delay_slot = UNMOVABLE_INS;
return label;
}
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
#define JUMP_LENGTH 4
#else
#define JUMP_LENGTH 8
#endif
#define BR_Z(src) \
inst = BEQ | SA(src) | TA(0) | JUMP_LENGTH; \
flags = IS_BIT26_COND; \
delay_check = src;
#define BR_NZ(src) \
inst = BNE | SA(src) | TA(0) | JUMP_LENGTH; \
flags = IS_BIT26_COND; \
delay_check = src;
#define BR_T() \
inst = BC1T | JUMP_LENGTH; \
flags = IS_BIT16_COND; \
delay_check = FCSR_FCC;
#define BR_F() \
inst = BC1F | JUMP_LENGTH; \
flags = IS_BIT16_COND; \
delay_check = FCSR_FCC;
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
{
struct sljit_jump *jump;
sljit_ins inst;
sljit_si flags = 0;
sljit_si delay_check = UNMOVABLE_INS;
CHECK_ERROR_PTR();
check_sljit_emit_jump(compiler, type);
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
switch (type) {
case SLJIT_C_EQUAL:
case SLJIT_C_FLOAT_NOT_EQUAL:
BR_NZ(EQUAL_FLAG);
break;
case SLJIT_C_NOT_EQUAL:
case SLJIT_C_FLOAT_EQUAL:
BR_Z(EQUAL_FLAG);
break;
case SLJIT_C_LESS:
case SLJIT_C_FLOAT_LESS:
BR_Z(ULESS_FLAG);
break;
case SLJIT_C_GREATER_EQUAL:
case SLJIT_C_FLOAT_GREATER_EQUAL:
BR_NZ(ULESS_FLAG);
break;
case SLJIT_C_GREATER:
case SLJIT_C_FLOAT_GREATER:
BR_Z(UGREATER_FLAG);
break;
case SLJIT_C_LESS_EQUAL:
case SLJIT_C_FLOAT_LESS_EQUAL:
BR_NZ(UGREATER_FLAG);
break;
case SLJIT_C_SIG_LESS:
BR_Z(LESS_FLAG);
break;
case SLJIT_C_SIG_GREATER_EQUAL:
BR_NZ(LESS_FLAG);
break;
case SLJIT_C_SIG_GREATER:
BR_Z(GREATER_FLAG);
break;
case SLJIT_C_SIG_LESS_EQUAL:
BR_NZ(GREATER_FLAG);
break;
case SLJIT_C_OVERFLOW:
case SLJIT_C_MUL_OVERFLOW:
BR_Z(OVERFLOW_FLAG);
break;
case SLJIT_C_NOT_OVERFLOW:
case SLJIT_C_MUL_NOT_OVERFLOW:
BR_NZ(OVERFLOW_FLAG);
break;
case SLJIT_C_FLOAT_UNORDERED:
BR_F();
break;
case SLJIT_C_FLOAT_ORDERED:
BR_T();
break;
default:
/* Not conditional branch. */
inst = 0;
break;
}
jump->flags |= flags;
if (compiler->delay_slot == MOVABLE_INS || (compiler->delay_slot != UNMOVABLE_INS && compiler->delay_slot != delay_check))
jump->flags |= IS_MOVABLE;
if (inst)
PTR_FAIL_IF(push_inst(compiler, inst, UNMOVABLE_INS));
PTR_FAIL_IF(emit_const(compiler, TMP_REG2, 0));
if (type <= SLJIT_JUMP) {
PTR_FAIL_IF(push_inst(compiler, JR | S(TMP_REG2), UNMOVABLE_INS));
jump->addr = compiler->size;
PTR_FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
} else {
SLJIT_ASSERT(DR(PIC_ADDR_REG) == 25 && PIC_ADDR_REG == TMP_REG2);
/* Cannot be optimized out if type is >= CALL0. */
jump->flags |= IS_JAL | (type >= SLJIT_CALL0 ? IS_CALL : 0);
PTR_FAIL_IF(push_inst(compiler, JALR | S(TMP_REG2) | DA(RETURN_ADDR_REG), UNMOVABLE_INS));
jump->addr = compiler->size;
/* A NOP if type < CALL1. */
PTR_FAIL_IF(push_inst(compiler, ADDU_W | S(SLJIT_SCRATCH_REG1) | TA(0) | DA(4), UNMOVABLE_INS));
}
return jump;
}
#define RESOLVE_IMM1() \
if (src1 & SLJIT_IMM) { \
if (src1w) { \
PTR_FAIL_IF(load_immediate(compiler, DR(TMP_REG1), src1w)); \
src1 = TMP_REG1; \
} \
else \
src1 = 0; \
}
#define RESOLVE_IMM2() \
if (src2 & SLJIT_IMM) { \
if (src2w) { \
PTR_FAIL_IF(load_immediate(compiler, DR(TMP_REG2), src2w)); \
src2 = TMP_REG2; \
} \
else \
src2 = 0; \
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_si type,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
struct sljit_jump *jump;
sljit_si flags;
sljit_ins inst;
CHECK_ERROR_PTR();
check_sljit_emit_cmp(compiler, type, src1, src1w, src2, src2w);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
flags = ((type & SLJIT_INT_OP) ? INT_DATA : WORD_DATA) | LOAD_DATA;
if (src1 & SLJIT_MEM) {
PTR_FAIL_IF(emit_op_mem2(compiler, flags, DR(TMP_REG1), src1, src1w, src2, src2w));
src1 = TMP_REG1;
}
if (src2 & SLJIT_MEM) {
PTR_FAIL_IF(emit_op_mem2(compiler, flags, DR(TMP_REG2), src2, src2w, 0, 0));
src2 = TMP_REG2;
}
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
if (type <= SLJIT_C_NOT_EQUAL) {
RESOLVE_IMM1();
RESOLVE_IMM2();
jump->flags |= IS_BIT26_COND;
if (compiler->delay_slot == MOVABLE_INS || (compiler->delay_slot != UNMOVABLE_INS && compiler->delay_slot != DR(src1) && compiler->delay_slot != DR(src2)))
jump->flags |= IS_MOVABLE;
PTR_FAIL_IF(push_inst(compiler, (type == SLJIT_C_EQUAL ? BNE : BEQ) | S(src1) | T(src2) | JUMP_LENGTH, UNMOVABLE_INS));
}
else if (type >= SLJIT_C_SIG_LESS && (((src1 & SLJIT_IMM) && (src1w == 0)) || ((src2 & SLJIT_IMM) && (src2w == 0)))) {
inst = NOP;
if ((src1 & SLJIT_IMM) && (src1w == 0)) {
RESOLVE_IMM2();
switch (type) {
case SLJIT_C_SIG_LESS:
inst = BLEZ;
jump->flags |= IS_BIT26_COND;
break;
case SLJIT_C_SIG_GREATER_EQUAL:
inst = BGTZ;
jump->flags |= IS_BIT26_COND;
break;
case SLJIT_C_SIG_GREATER:
inst = BGEZ;
jump->flags |= IS_BIT16_COND;
break;
case SLJIT_C_SIG_LESS_EQUAL:
inst = BLTZ;
jump->flags |= IS_BIT16_COND;
break;
}
src1 = src2;
}
else {
RESOLVE_IMM1();
switch (type) {
case SLJIT_C_SIG_LESS:
inst = BGEZ;
jump->flags |= IS_BIT16_COND;
break;
case SLJIT_C_SIG_GREATER_EQUAL:
inst = BLTZ;
jump->flags |= IS_BIT16_COND;
break;
case SLJIT_C_SIG_GREATER:
inst = BLEZ;
jump->flags |= IS_BIT26_COND;
break;
case SLJIT_C_SIG_LESS_EQUAL:
inst = BGTZ;
jump->flags |= IS_BIT26_COND;
break;
}
}
PTR_FAIL_IF(push_inst(compiler, inst | S(src1) | JUMP_LENGTH, UNMOVABLE_INS));
}
else {
if (type == SLJIT_C_LESS || type == SLJIT_C_GREATER_EQUAL || type == SLJIT_C_SIG_LESS || type == SLJIT_C_SIG_GREATER_EQUAL) {
RESOLVE_IMM1();
if ((src2 & SLJIT_IMM) && src2w <= SIMM_MAX && src2w >= SIMM_MIN)
PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_C_LESS_EQUAL ? SLTIU : SLTI) | S(src1) | T(TMP_REG1) | IMM(src2w), DR(TMP_REG1)));
else {
RESOLVE_IMM2();
PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_C_LESS_EQUAL ? SLTU : SLT) | S(src1) | T(src2) | D(TMP_REG1), DR(TMP_REG1)));
}
type = (type == SLJIT_C_LESS || type == SLJIT_C_SIG_LESS) ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
}
else {
RESOLVE_IMM2();
if ((src1 & SLJIT_IMM) && src1w <= SIMM_MAX && src1w >= SIMM_MIN)
PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_C_LESS_EQUAL ? SLTIU : SLTI) | S(src2) | T(TMP_REG1) | IMM(src1w), DR(TMP_REG1)));
else {
RESOLVE_IMM1();
PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_C_LESS_EQUAL ? SLTU : SLT) | S(src2) | T(src1) | D(TMP_REG1), DR(TMP_REG1)));
}
type = (type == SLJIT_C_GREATER || type == SLJIT_C_SIG_GREATER) ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
}
jump->flags |= IS_BIT26_COND;
PTR_FAIL_IF(push_inst(compiler, (type == SLJIT_C_EQUAL ? BNE : BEQ) | S(TMP_REG1) | TA(0) | JUMP_LENGTH, UNMOVABLE_INS));
}
PTR_FAIL_IF(emit_const(compiler, TMP_REG2, 0));
PTR_FAIL_IF(push_inst(compiler, JR | S(TMP_REG2), UNMOVABLE_INS));
jump->addr = compiler->size;
PTR_FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
return jump;
}
#undef RESOLVE_IMM1
#undef RESOLVE_IMM2
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_si type,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
struct sljit_jump *jump;
sljit_ins inst;
sljit_si if_true;
CHECK_ERROR_PTR();
check_sljit_emit_fcmp(compiler, type, src1, src1w, src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
if (src1 & SLJIT_MEM) {
PTR_FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(type) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
src1 = TMP_FREG1;
}
else
src1 <<= 1;
if (src2 & SLJIT_MEM) {
PTR_FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(type) | LOAD_DATA, TMP_FREG2, src2, src2w, 0, 0));
src2 = TMP_FREG2;
}
else
src2 <<= 1;
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
jump->flags |= IS_BIT16_COND;
switch (type & 0xff) {
case SLJIT_C_FLOAT_EQUAL:
inst = C_UEQ_fmt;
if_true = 1;
break;
case SLJIT_C_FLOAT_NOT_EQUAL:
inst = C_UEQ_fmt;
if_true = 0;
break;
case SLJIT_C_FLOAT_LESS:
inst = C_ULT_fmt;
if_true = 1;
break;
case SLJIT_C_FLOAT_GREATER_EQUAL:
inst = C_ULT_fmt;
if_true = 0;
break;
case SLJIT_C_FLOAT_GREATER:
inst = C_ULE_fmt;
if_true = 0;
break;
case SLJIT_C_FLOAT_LESS_EQUAL:
inst = C_ULE_fmt;
if_true = 1;
break;
case SLJIT_C_FLOAT_UNORDERED:
inst = C_UN_fmt;
if_true = 1;
break;
case SLJIT_C_FLOAT_ORDERED:
default: /* Make compilers happy. */
inst = C_UN_fmt;
if_true = 0;
break;
}
PTR_FAIL_IF(push_inst(compiler, inst | FMT(type) | FT(src2) | FS(src1), UNMOVABLE_INS));
/* Intentionally the other opcode. */
PTR_FAIL_IF(push_inst(compiler, (if_true ? BC1F : BC1T) | JUMP_LENGTH, UNMOVABLE_INS));
PTR_FAIL_IF(emit_const(compiler, TMP_REG2, 0));
PTR_FAIL_IF(push_inst(compiler, JR | S(TMP_REG2), UNMOVABLE_INS));
jump->addr = compiler->size;
PTR_FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
return jump;
}
#undef JUMP_LENGTH
#undef BR_Z
#undef BR_NZ
#undef BR_T
#undef BR_F
#undef FLOAT_DATA
#undef FMT
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
{
sljit_si src_r = TMP_REG2;
struct sljit_jump *jump = NULL;
CHECK_ERROR();
check_sljit_emit_ijump(compiler, type, src, srcw);
ADJUST_LOCAL_OFFSET(src, srcw);
if (FAST_IS_REG(src)) {
if (DR(src) != 4)
src_r = src;
else
FAIL_IF(push_inst(compiler, ADDU_W | S(src) | TA(0) | D(TMP_REG2), DR(TMP_REG2)));
}
if (type >= SLJIT_CALL0) {
SLJIT_ASSERT(DR(PIC_ADDR_REG) == 25 && PIC_ADDR_REG == TMP_REG2);
if (src & (SLJIT_IMM | SLJIT_MEM)) {
if (src & SLJIT_IMM)
FAIL_IF(load_immediate(compiler, DR(PIC_ADDR_REG), srcw));
else {
SLJIT_ASSERT(src_r == TMP_REG2 && (src & SLJIT_MEM));
FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
}
FAIL_IF(push_inst(compiler, JALR | S(PIC_ADDR_REG) | DA(RETURN_ADDR_REG), UNMOVABLE_INS));
/* We need an extra instruction in any case. */
return push_inst(compiler, ADDU_W | S(SLJIT_SCRATCH_REG1) | TA(0) | DA(4), UNMOVABLE_INS);
}
/* Register input. */
if (type >= SLJIT_CALL1)
FAIL_IF(push_inst(compiler, ADDU_W | S(SLJIT_SCRATCH_REG1) | TA(0) | DA(4), 4));
FAIL_IF(push_inst(compiler, JALR | S(src_r) | DA(RETURN_ADDR_REG), UNMOVABLE_INS));
return push_inst(compiler, ADDU_W | S(src_r) | TA(0) | D(PIC_ADDR_REG), UNMOVABLE_INS);
}
if (src & SLJIT_IMM) {
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF(!jump);
set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0));
jump->u.target = srcw;
if (compiler->delay_slot != UNMOVABLE_INS)
jump->flags |= IS_MOVABLE;
FAIL_IF(emit_const(compiler, TMP_REG2, 0));
}
else if (src & SLJIT_MEM)
FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
FAIL_IF(push_inst(compiler, JR | S(src_r), UNMOVABLE_INS));
if (jump)
jump->addr = compiler->size;
FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw,
sljit_si type)
{
sljit_si sugg_dst_ar, dst_ar;
sljit_si flags = GET_ALL_FLAGS(op);
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# define mem_type WORD_DATA
#else
sljit_si mem_type = (op & SLJIT_INT_OP) ? (INT_DATA | SIGNED_DATA) : WORD_DATA;
#endif
CHECK_ERROR();
check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type);
ADJUST_LOCAL_OFFSET(dst, dstw);
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
op = GET_OPCODE(op);
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
if (op == SLJIT_MOV_SI || op == SLJIT_MOV_UI)
mem_type = INT_DATA | SIGNED_DATA;
#endif
sugg_dst_ar = DR((op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
ADJUST_LOCAL_OFFSET(src, srcw);
FAIL_IF(emit_op_mem2(compiler, mem_type | LOAD_DATA, DR(TMP_REG1), src, srcw, dst, dstw));
src = TMP_REG1;
srcw = 0;
}
switch (type) {
case SLJIT_C_EQUAL:
case SLJIT_C_NOT_EQUAL:
FAIL_IF(push_inst(compiler, SLTIU | SA(EQUAL_FLAG) | TA(sugg_dst_ar) | IMM(1), sugg_dst_ar));
dst_ar = sugg_dst_ar;
break;
case SLJIT_C_LESS:
case SLJIT_C_GREATER_EQUAL:
case SLJIT_C_FLOAT_LESS:
case SLJIT_C_FLOAT_GREATER_EQUAL:
dst_ar = ULESS_FLAG;
break;
case SLJIT_C_GREATER:
case SLJIT_C_LESS_EQUAL:
case SLJIT_C_FLOAT_GREATER:
case SLJIT_C_FLOAT_LESS_EQUAL:
dst_ar = UGREATER_FLAG;
break;
case SLJIT_C_SIG_LESS:
case SLJIT_C_SIG_GREATER_EQUAL:
dst_ar = LESS_FLAG;
break;
case SLJIT_C_SIG_GREATER:
case SLJIT_C_SIG_LESS_EQUAL:
dst_ar = GREATER_FLAG;
break;
case SLJIT_C_OVERFLOW:
case SLJIT_C_NOT_OVERFLOW:
dst_ar = OVERFLOW_FLAG;
break;
case SLJIT_C_MUL_OVERFLOW:
case SLJIT_C_MUL_NOT_OVERFLOW:
FAIL_IF(push_inst(compiler, SLTIU | SA(OVERFLOW_FLAG) | TA(sugg_dst_ar) | IMM(1), sugg_dst_ar));
dst_ar = sugg_dst_ar;
type ^= 0x1; /* Flip type bit for the XORI below. */
break;
case SLJIT_C_FLOAT_EQUAL:
case SLJIT_C_FLOAT_NOT_EQUAL:
dst_ar = EQUAL_FLAG;
break;
case SLJIT_C_FLOAT_UNORDERED:
case SLJIT_C_FLOAT_ORDERED:
FAIL_IF(push_inst(compiler, CFC1 | TA(sugg_dst_ar) | DA(FCSR_REG), sugg_dst_ar));
FAIL_IF(push_inst(compiler, SRL | TA(sugg_dst_ar) | DA(sugg_dst_ar) | SH_IMM(23), sugg_dst_ar));
FAIL_IF(push_inst(compiler, ANDI | SA(sugg_dst_ar) | TA(sugg_dst_ar) | IMM(1), sugg_dst_ar));
dst_ar = sugg_dst_ar;
break;
default:
SLJIT_ASSERT_STOP();
dst_ar = sugg_dst_ar;
break;
}
if (type & 0x1) {
FAIL_IF(push_inst(compiler, XORI | SA(dst_ar) | TA(sugg_dst_ar) | IMM(1), sugg_dst_ar));
dst_ar = sugg_dst_ar;
}
if (op >= SLJIT_ADD) {
if (DR(TMP_REG2) != dst_ar)
FAIL_IF(push_inst(compiler, ADDU_W | SA(dst_ar) | TA(0) | D(TMP_REG2), DR(TMP_REG2)));
return emit_op(compiler, op | flags, mem_type | CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);
}
if (dst & SLJIT_MEM)
return emit_op_mem(compiler, mem_type, dst_ar, dst, dstw);
if (sugg_dst_ar != dst_ar)
return push_inst(compiler, ADDU_W | SA(dst_ar) | TA(0) | DA(sugg_dst_ar), sugg_dst_ar);
return SLJIT_SUCCESS;
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# undef mem_type
#endif
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
{
struct sljit_const *const_;
sljit_si reg;
CHECK_ERROR_PTR();
check_sljit_emit_const(compiler, dst, dstw, init_value);
ADJUST_LOCAL_OFFSET(dst, dstw);
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
set_const(const_, compiler);
reg = SLOW_IS_REG(dst) ? dst : TMP_REG2;
PTR_FAIL_IF(emit_const(compiler, reg, init_value));
if (dst & SLJIT_MEM)
PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
return const_;
}