amxmodx/dlls/arrayx/Judy-1.0.1/src/JudyL/JudyLGet.c

1095 lines
35 KiB
C

// Copyright (C) 2000 - 2002 Hewlett-Packard Company
//
// This program is free software; you can redistribute it and/or modify it
// under the term of the GNU Lesser General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
// for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// _________________
// @(#) $Revision$ $Source$
//
// Judy1Test() and JudyLGet() functions for Judy1 and JudyL.
// Compile with one of -DJUDY1 or -DJUDYL.
#if (! (defined(JUDY1) || defined(JUDYL)))
#error: One of -DJUDY1 or -DJUDYL must be specified.
#endif
#ifdef JUDY1
#include "Judy1.h"
#else
#include "JudyL.h"
#endif
#include "JudyPrivate1L.h"
#ifdef TRACEJPR // different macro name, for "retrieval" only.
#include "JudyPrintJP.c"
#endif
// ****************************************************************************
// J U D Y 1 T E S T
// J U D Y L G E T
//
// See the manual entry for details. Note support for "shortcut" entries to
// trees known to start with a JPM.
#ifdef JUDY1
#ifdef JUDYGETINLINE
FUNCTION int j__udy1Test
#else
FUNCTION int Judy1Test
#endif
#else // JUDYL
#ifdef JUDYGETINLINE
FUNCTION PPvoid_t j__udyLGet
#else
FUNCTION PPvoid_t JudyLGet
#endif
#endif // JUDYL
(
#ifdef JUDYGETINLINE
Pvoid_t PArray, // from which to retrieve.
Word_t Index // to retrieve.
#else
Pcvoid_t PArray, // from which to retrieve.
Word_t Index, // to retrieve.
PJError_t PJError // optional, for returning error info.
#endif
)
{
Pjp_t Pjp; // current JP while walking the tree.
Pjpm_t Pjpm; // for global accounting.
uint8_t Digit; // byte just decoded from Index.
Word_t Pop1; // leaf population (number of indexes).
Pjll_t Pjll; // pointer to LeafL.
DBGCODE(uint8_t ParentJPType;)
#ifndef JUDYGETINLINE
if (PArray == (Pcvoid_t) NULL) // empty array.
{
JUDY1CODE(return(0);)
JUDYLCODE(return((PPvoid_t) NULL);)
}
// ****************************************************************************
// PROCESS TOP LEVEL BRANCHES AND LEAF:
if (JU_LEAFW_POP0(PArray) < cJU_LEAFW_MAXPOP1) // must be a LEAFW
{
Pjlw_t Pjlw = P_JLW(PArray); // first word of leaf.
int posidx; // signed offset in leaf.
Pop1 = Pjlw[0] + 1;
posidx = j__udySearchLeafW(Pjlw + 1, Pop1, Index);
if (posidx >= 0)
{
JUDY1CODE(return(1);)
JUDYLCODE(return((PPvoid_t) (JL_LEAFWVALUEAREA(Pjlw, Pop1) + posidx));)
}
JUDY1CODE(return(0);)
JUDYLCODE(return((PPvoid_t) NULL);)
}
#endif // ! JUDYGETINLINE
Pjpm = P_JPM(PArray);
Pjp = &(Pjpm->jpm_JP); // top branch is below JPM.
// ****************************************************************************
// WALK THE JUDY TREE USING A STATE MACHINE:
ContinueWalk: // for going down one level; come here with Pjp set.
#ifdef TRACEJPR
JudyPrintJP(Pjp, "g", __LINE__);
#endif
switch (JU_JPTYPE(Pjp))
{
// Ensure the switch table starts at 0 for speed; otherwise more code is
// executed:
case 0: goto ReturnCorrupt; // save a little code.
// ****************************************************************************
// JPNULL*:
//
// Note: These are legitimate in a BranchU (only) and do not constitute a
// fault.
case cJU_JPNULL1:
case cJU_JPNULL2:
case cJU_JPNULL3:
#ifdef JU_64BIT
case cJU_JPNULL4:
case cJU_JPNULL5:
case cJU_JPNULL6:
case cJU_JPNULL7:
#endif
assert(ParentJPType >= cJU_JPBRANCH_U2);
assert(ParentJPType <= cJU_JPBRANCH_U);
JUDY1CODE(return(0);)
JUDYLCODE(return((PPvoid_t) NULL);)
// ****************************************************************************
// JPBRANCH_L*:
//
// Note: The use of JU_DCDNOTMATCHINDEX() in branches is not strictly
// required,since this can be done at leaf level, but it costs nothing to do it
// sooner, and it aborts an unnecessary traversal sooner.
case cJU_JPBRANCH_L2:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 2)) break;
Digit = JU_DIGITATSTATE(Index, 2);
goto JudyBranchL;
case cJU_JPBRANCH_L3:
#ifdef JU_64BIT // otherwise its a no-op:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 3)) break;
#endif
Digit = JU_DIGITATSTATE(Index, 3);
goto JudyBranchL;
#ifdef JU_64BIT
case cJU_JPBRANCH_L4:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 4)) break;
Digit = JU_DIGITATSTATE(Index, 4);
goto JudyBranchL;
case cJU_JPBRANCH_L5:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 5)) break;
Digit = JU_DIGITATSTATE(Index, 5);
goto JudyBranchL;
case cJU_JPBRANCH_L6:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 6)) break;
Digit = JU_DIGITATSTATE(Index, 6);
goto JudyBranchL;
case cJU_JPBRANCH_L7:
// JU_DCDNOTMATCHINDEX() would be a no-op.
Digit = JU_DIGITATSTATE(Index, 7);
goto JudyBranchL;
#endif // JU_64BIT
case cJU_JPBRANCH_L:
{
Pjbl_t Pjbl;
int posidx;
Digit = JU_DIGITATSTATE(Index, cJU_ROOTSTATE);
// Common code for all BranchLs; come here with Digit set:
JudyBranchL:
Pjbl = P_JBL(Pjp->jp_Addr);
posidx = 0;
do {
if (Pjbl->jbl_Expanse[posidx] == Digit)
{ // found Digit; continue traversal:
DBGCODE(ParentJPType = JU_JPTYPE(Pjp);)
Pjp = Pjbl->jbl_jp + posidx;
goto ContinueWalk;
}
} while (++posidx != Pjbl->jbl_NumJPs);
break;
}
// ****************************************************************************
// JPBRANCH_B*:
case cJU_JPBRANCH_B2:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 2)) break;
Digit = JU_DIGITATSTATE(Index, 2);
goto JudyBranchB;
case cJU_JPBRANCH_B3:
#ifdef JU_64BIT // otherwise its a no-op:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 3)) break;
#endif
Digit = JU_DIGITATSTATE(Index, 3);
goto JudyBranchB;
#ifdef JU_64BIT
case cJU_JPBRANCH_B4:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 4)) break;
Digit = JU_DIGITATSTATE(Index, 4);
goto JudyBranchB;
case cJU_JPBRANCH_B5:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 5)) break;
Digit = JU_DIGITATSTATE(Index, 5);
goto JudyBranchB;
case cJU_JPBRANCH_B6:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 6)) break;
Digit = JU_DIGITATSTATE(Index, 6);
goto JudyBranchB;
case cJU_JPBRANCH_B7:
// JU_DCDNOTMATCHINDEX() would be a no-op.
Digit = JU_DIGITATSTATE(Index, 7);
goto JudyBranchB;
#endif // JU_64BIT
case cJU_JPBRANCH_B:
{
Pjbb_t Pjbb;
Word_t subexp; // in bitmap, 0..7.
BITMAPB_t BitMap; // for one subexpanse.
BITMAPB_t BitMask; // bit in BitMap for Indexs Digit.
Digit = JU_DIGITATSTATE(Index, cJU_ROOTSTATE);
// Common code for all BranchBs; come here with Digit set:
JudyBranchB:
DBGCODE(ParentJPType = JU_JPTYPE(Pjp);)
Pjbb = P_JBB(Pjp->jp_Addr);
subexp = Digit / cJU_BITSPERSUBEXPB;
BitMap = JU_JBB_BITMAP(Pjbb, subexp);
Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp));
BitMask = JU_BITPOSMASKB(Digit);
// No JP in subexpanse for Index => Index not found:
if (! (BitMap & BitMask)) break;
// Count JPs in the subexpanse below the one for Index:
Pjp += j__udyCountBitsB(BitMap & (BitMask - 1));
goto ContinueWalk;
} // case cJU_JPBRANCH_B*
// ****************************************************************************
// JPBRANCH_U*:
//
// Notice the reverse order of the cases, and falling through to the next case,
// for performance.
case cJU_JPBRANCH_U:
DBGCODE(ParentJPType = JU_JPTYPE(Pjp);)
Pjp = JU_JBU_PJP(Pjp, Index, cJU_ROOTSTATE);
// If not a BranchU, traverse; otherwise fall into the next case, which makes
// this very fast code for a large Judy array (mainly BranchUs), especially
// when branches are already in the cache, such as for prev/next:
#ifndef JU_64BIT
if (JU_JPTYPE(Pjp) != cJU_JPBRANCH_U3) goto ContinueWalk;
#else
if (JU_JPTYPE(Pjp) != cJU_JPBRANCH_U7) goto ContinueWalk;
#endif
#ifdef JU_64BIT
case cJU_JPBRANCH_U7:
// JU_DCDNOTMATCHINDEX() would be a no-op.
DBGCODE(ParentJPType = JU_JPTYPE(Pjp);)
Pjp = JU_JBU_PJP(Pjp, Index, 7);
if (JU_JPTYPE(Pjp) != cJU_JPBRANCH_U6) goto ContinueWalk;
// and fall through.
case cJU_JPBRANCH_U6:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 6)) break;
DBGCODE(ParentJPType = JU_JPTYPE(Pjp);)
Pjp = JU_JBU_PJP(Pjp, Index, 6);
if (JU_JPTYPE(Pjp) != cJU_JPBRANCH_U5) goto ContinueWalk;
// and fall through.
case cJU_JPBRANCH_U5:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 5)) break;
DBGCODE(ParentJPType = JU_JPTYPE(Pjp);)
Pjp = JU_JBU_PJP(Pjp, Index, 5);
if (JU_JPTYPE(Pjp) != cJU_JPBRANCH_U4) goto ContinueWalk;
// and fall through.
case cJU_JPBRANCH_U4:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 4)) break;
DBGCODE(ParentJPType = JU_JPTYPE(Pjp);)
Pjp = JU_JBU_PJP(Pjp, Index, 4);
if (JU_JPTYPE(Pjp) != cJU_JPBRANCH_U3) goto ContinueWalk;
// and fall through.
#endif // JU_64BIT
case cJU_JPBRANCH_U3:
#ifdef JU_64BIT // otherwise its a no-op:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 3)) break;
#endif
DBGCODE(ParentJPType = JU_JPTYPE(Pjp);)
Pjp = JU_JBU_PJP(Pjp, Index, 3);
if (JU_JPTYPE(Pjp) != cJU_JPBRANCH_U2) goto ContinueWalk;
// and fall through.
case cJU_JPBRANCH_U2:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 2)) break;
DBGCODE(ParentJPType = JU_JPTYPE(Pjp);)
Pjp = JU_JBU_PJP(Pjp, Index, 2);
// Note: BranchU2 is a special case that must continue traversal to a leaf,
// immed, full, or null type:
goto ContinueWalk;
// ****************************************************************************
// JPLEAF*:
//
// Note: Here the calls of JU_DCDNOTMATCHINDEX() are necessary and check
// whether Index is out of the expanse of a narrow pointer.
#if (defined(JUDYL) || (! defined(JU_64BIT)))
case cJU_JPLEAF1:
{
int posidx; // signed offset in leaf.
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 1)) break;
Pop1 = JU_JPLEAF_POP0(Pjp) + 1;
Pjll = P_JLL(Pjp->jp_Addr);
if ((posidx = j__udySearchLeaf1(Pjll, Pop1, Index)) < 0) break;
JUDY1CODE(return(1);)
JUDYLCODE(return((PPvoid_t) (JL_LEAF1VALUEAREA(Pjll, Pop1) + posidx));)
}
#endif // (JUDYL || (! JU_64BIT))
case cJU_JPLEAF2:
{
int posidx; // signed offset in leaf.
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 2)) break;
Pop1 = JU_JPLEAF_POP0(Pjp) + 1;
Pjll = P_JLL(Pjp->jp_Addr);
if ((posidx = j__udySearchLeaf2(Pjll, Pop1, Index)) < 0) break;
JUDY1CODE(return(1);)
JUDYLCODE(return((PPvoid_t) (JL_LEAF2VALUEAREA(Pjll, Pop1) + posidx));)
}
case cJU_JPLEAF3:
{
int posidx; // signed offset in leaf.
#ifdef JU_64BIT // otherwise its a no-op:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 3)) break;
#endif
Pop1 = JU_JPLEAF_POP0(Pjp) + 1;
Pjll = P_JLL(Pjp->jp_Addr);
if ((posidx = j__udySearchLeaf3(Pjll, Pop1, Index)) < 0) break;
JUDY1CODE(return(1);)
JUDYLCODE(return((PPvoid_t) (JL_LEAF3VALUEAREA(Pjll, Pop1) + posidx));)
}
#ifdef JU_64BIT
case cJU_JPLEAF4:
{
int posidx; // signed offset in leaf.
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 4)) break;
Pop1 = JU_JPLEAF_POP0(Pjp) + 1;
Pjll = P_JLL(Pjp->jp_Addr);
if ((posidx = j__udySearchLeaf4(Pjll, Pop1, Index)) < 0) break;
JUDY1CODE(return(1);)
JUDYLCODE(return((PPvoid_t) (JL_LEAF4VALUEAREA(Pjll, Pop1) + posidx));)
}
case cJU_JPLEAF5:
{
int posidx; // signed offset in leaf.
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 5)) break;
Pop1 = JU_JPLEAF_POP0(Pjp) + 1;
Pjll = P_JLL(Pjp->jp_Addr);
if ((posidx = j__udySearchLeaf5(Pjll, Pop1, Index)) < 0) break;
JUDY1CODE(return(1);)
JUDYLCODE(return((PPvoid_t) (JL_LEAF5VALUEAREA(Pjll, Pop1) + posidx));)
}
case cJU_JPLEAF6:
{
int posidx; // signed offset in leaf.
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 6)) break;
Pop1 = JU_JPLEAF_POP0(Pjp) + 1;
Pjll = P_JLL(Pjp->jp_Addr);
if ((posidx = j__udySearchLeaf6(Pjll, Pop1, Index)) < 0) break;
JUDY1CODE(return(1);)
JUDYLCODE(return((PPvoid_t) (JL_LEAF6VALUEAREA(Pjll, Pop1) + posidx));)
}
case cJU_JPLEAF7:
{
int posidx; // signed offset in leaf.
// JU_DCDNOTMATCHINDEX() would be a no-op.
Pop1 = JU_JPLEAF_POP0(Pjp) + 1;
Pjll = P_JLL(Pjp->jp_Addr);
if ((posidx = j__udySearchLeaf7(Pjll, Pop1, Index)) < 0) break;
JUDY1CODE(return(1);)
JUDYLCODE(return((PPvoid_t) (JL_LEAF7VALUEAREA(Pjll, Pop1) + posidx));)
}
#endif // JU_64BIT
// ****************************************************************************
// JPLEAF_B1:
case cJU_JPLEAF_B1:
{
Pjlb_t Pjlb;
#ifdef JUDYL
int posidx;
Word_t subexp; // in bitmap, 0..7.
BITMAPL_t BitMap; // for one subexpanse.
BITMAPL_t BitMask; // bit in BitMap for Indexs Digit.
Pjv_t Pjv;
#endif
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 1)) break;
Pjlb = P_JLB(Pjp->jp_Addr);
#ifdef JUDY1
// Simply check if Indexs bit is set in the bitmap:
if (JU_BITMAPTESTL(Pjlb, Index)) return(1);
break;
#else // JUDYL
// JudyL is much more complicated because of value area subarrays:
Digit = JU_DIGITATSTATE(Index, 1);
subexp = Digit / cJU_BITSPERSUBEXPL;
BitMap = JU_JLB_BITMAP(Pjlb, subexp);
BitMask = JU_BITPOSMASKL(Digit);
// No value in subexpanse for Index => Index not found:
if (! (BitMap & BitMask)) break;
// Count value areas in the subexpanse below the one for Index:
Pjv = P_JV(JL_JLB_PVALUE(Pjlb, subexp));
assert(Pjv != (Pjv_t) NULL);
posidx = j__udyCountBitsL(BitMap & (BitMask - 1));
return((PPvoid_t) (Pjv + posidx));
#endif // JUDYL
} // case cJU_JPLEAF_B1
#ifdef JUDY1
// ****************************************************************************
// JPFULLPOPU1:
//
// If the Index is in the expanse, it is necessarily valid (found).
case cJ1_JPFULLPOPU1:
if (JU_DCDNOTMATCHINDEX(Index, Pjp, 1)) break;
return(1);
#ifdef notdef // for future enhancements
#ifdef JU_64BIT
// Note: Need ? if (JU_DCDNOTMATCHINDEX(Index, Pjp, 1)) break;
case cJ1_JPFULLPOPU1m15:
if (Pjp->jp_1Index[14] == (uint8_t)Index) break;
case cJ1_JPFULLPOPU1m14:
if (Pjp->jp_1Index[13] == (uint8_t)Index) break;
case cJ1_JPFULLPOPU1m13:
if (Pjp->jp_1Index[12] == (uint8_t)Index) break;
case cJ1_JPFULLPOPU1m12:
if (Pjp->jp_1Index[11] == (uint8_t)Index) break;
case cJ1_JPFULLPOPU1m11:
if (Pjp->jp_1Index[10] == (uint8_t)Index) break;
case cJ1_JPFULLPOPU1m10:
if (Pjp->jp_1Index[9] == (uint8_t)Index) break;
case cJ1_JPFULLPOPU1m9:
if (Pjp->jp_1Index[8] == (uint8_t)Index) break;
case cJ1_JPFULLPOPU1m8:
if (Pjp->jp_1Index[7] == (uint8_t)Index) break;
#endif
case cJ1_JPFULLPOPU1m7:
if (Pjp->jp_1Index[6] == (uint8_t)Index) break;
case cJ1_JPFULLPOPU1m6:
if (Pjp->jp_1Index[5] == (uint8_t)Index) break;
case cJ1_JPFULLPOPU1m5:
if (Pjp->jp_1Index[4] == (uint8_t)Index) break;
case cJ1_JPFULLPOPU1m4:
if (Pjp->jp_1Index[3] == (uint8_t)Index) break;
case cJ1_JPFULLPOPU1m3:
if (Pjp->jp_1Index[2] == (uint8_t)Index) break;
case cJ1_JPFULLPOPU1m2:
if (Pjp->jp_1Index[1] == (uint8_t)Index) break;
case cJ1_JPFULLPOPU1m1:
if (Pjp->jp_1Index[0] == (uint8_t)Index) break;
return(1); // found, not in exclusion list
#endif // JUDY1
#endif // notdef
// ****************************************************************************
// JPIMMED*:
//
// Note that the contents of jp_DcdPopO are different for cJU_JPIMMED_*_01:
case cJU_JPIMMED_1_01:
case cJU_JPIMMED_2_01:
case cJU_JPIMMED_3_01:
#ifdef JU_64BIT
case cJU_JPIMMED_4_01:
case cJU_JPIMMED_5_01:
case cJU_JPIMMED_6_01:
case cJU_JPIMMED_7_01:
#endif
if (JU_JPDCDPOP0(Pjp) != JU_TRIMTODCDSIZE(Index)) break;
JUDY1CODE(return(1);)
JUDYLCODE(return((PPvoid_t) &(Pjp->jp_Addr));) // immediate value area.
// Macros to make code more readable and avoid dup errors
#ifdef JUDY1
#define CHECKINDEXNATIVE(LEAF_T, PJP, IDX, INDEX) \
if (((LEAF_T *)((PJP)->jp_1Index))[(IDX) - 1] == (LEAF_T)(INDEX)) \
return(1)
#define CHECKLEAFNONNAT(LFBTS, PJP, INDEX, IDX, COPY) \
{ \
Word_t i_ndex; \
uint8_t *a_ddr; \
a_ddr = (PJP)->jp_1Index + (((IDX) - 1) * (LFBTS)); \
COPY(i_ndex, a_ddr); \
if (i_ndex == JU_LEASTBYTES((INDEX), (LFBTS))) \
return(1); \
}
#endif
#ifdef JUDYL
#define CHECKINDEXNATIVE(LEAF_T, PJP, IDX, INDEX) \
if (((LEAF_T *)((PJP)->jp_LIndex))[(IDX) - 1] == (LEAF_T)(INDEX)) \
return((PPvoid_t)(P_JV((PJP)->jp_Addr) + (IDX) - 1))
#define CHECKLEAFNONNAT(LFBTS, PJP, INDEX, IDX, COPY) \
{ \
Word_t i_ndex; \
uint8_t *a_ddr; \
a_ddr = (PJP)->jp_LIndex + (((IDX) - 1) * (LFBTS)); \
COPY(i_ndex, a_ddr); \
if (i_ndex == JU_LEASTBYTES((INDEX), (LFBTS))) \
return((PPvoid_t)(P_JV((PJP)->jp_Addr) + (IDX) - 1)); \
}
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_1_15: CHECKINDEXNATIVE(uint8_t, Pjp, 15, Index);
case cJ1_JPIMMED_1_14: CHECKINDEXNATIVE(uint8_t, Pjp, 14, Index);
case cJ1_JPIMMED_1_13: CHECKINDEXNATIVE(uint8_t, Pjp, 13, Index);
case cJ1_JPIMMED_1_12: CHECKINDEXNATIVE(uint8_t, Pjp, 12, Index);
case cJ1_JPIMMED_1_11: CHECKINDEXNATIVE(uint8_t, Pjp, 11, Index);
case cJ1_JPIMMED_1_10: CHECKINDEXNATIVE(uint8_t, Pjp, 10, Index);
case cJ1_JPIMMED_1_09: CHECKINDEXNATIVE(uint8_t, Pjp, 9, Index);
case cJ1_JPIMMED_1_08: CHECKINDEXNATIVE(uint8_t, Pjp, 8, Index);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_1_07: CHECKINDEXNATIVE(uint8_t, Pjp, 7, Index);
case cJU_JPIMMED_1_06: CHECKINDEXNATIVE(uint8_t, Pjp, 6, Index);
case cJU_JPIMMED_1_05: CHECKINDEXNATIVE(uint8_t, Pjp, 5, Index);
case cJU_JPIMMED_1_04: CHECKINDEXNATIVE(uint8_t, Pjp, 4, Index);
#endif
case cJU_JPIMMED_1_03: CHECKINDEXNATIVE(uint8_t, Pjp, 3, Index);
case cJU_JPIMMED_1_02: CHECKINDEXNATIVE(uint8_t, Pjp, 2, Index);
CHECKINDEXNATIVE(uint8_t, Pjp, 1, Index);
break;
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_2_07: CHECKINDEXNATIVE(uint16_t, Pjp, 7, Index);
case cJ1_JPIMMED_2_06: CHECKINDEXNATIVE(uint16_t, Pjp, 6, Index);
case cJ1_JPIMMED_2_05: CHECKINDEXNATIVE(uint16_t, Pjp, 5, Index);
case cJ1_JPIMMED_2_04: CHECKINDEXNATIVE(uint16_t, Pjp, 4, Index);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_2_03: CHECKINDEXNATIVE(uint16_t, Pjp, 3, Index);
case cJU_JPIMMED_2_02: CHECKINDEXNATIVE(uint16_t, Pjp, 2, Index);
CHECKINDEXNATIVE(uint16_t, Pjp, 1, Index);
break;
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_3_05:
CHECKLEAFNONNAT(3, Pjp, Index, 5, JU_COPY3_PINDEX_TO_LONG);
case cJ1_JPIMMED_3_04:
CHECKLEAFNONNAT(3, Pjp, Index, 4, JU_COPY3_PINDEX_TO_LONG);
case cJ1_JPIMMED_3_03:
CHECKLEAFNONNAT(3, Pjp, Index, 3, JU_COPY3_PINDEX_TO_LONG);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_3_02:
CHECKLEAFNONNAT(3, Pjp, Index, 2, JU_COPY3_PINDEX_TO_LONG);
CHECKLEAFNONNAT(3, Pjp, Index, 1, JU_COPY3_PINDEX_TO_LONG);
break;
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_4_03: CHECKINDEXNATIVE(uint32_t, Pjp, 3, Index);
case cJ1_JPIMMED_4_02: CHECKINDEXNATIVE(uint32_t, Pjp, 2, Index);
CHECKINDEXNATIVE(uint32_t, Pjp, 1, Index);
break;
case cJ1_JPIMMED_5_03:
CHECKLEAFNONNAT(5, Pjp, Index, 3, JU_COPY5_PINDEX_TO_LONG);
case cJ1_JPIMMED_5_02:
CHECKLEAFNONNAT(5, Pjp, Index, 2, JU_COPY5_PINDEX_TO_LONG);
CHECKLEAFNONNAT(5, Pjp, Index, 1, JU_COPY5_PINDEX_TO_LONG);
break;
case cJ1_JPIMMED_6_02:
CHECKLEAFNONNAT(6, Pjp, Index, 2, JU_COPY6_PINDEX_TO_LONG);
CHECKLEAFNONNAT(6, Pjp, Index, 1, JU_COPY6_PINDEX_TO_LONG);
break;
case cJ1_JPIMMED_7_02:
CHECKLEAFNONNAT(7, Pjp, Index, 2, JU_COPY7_PINDEX_TO_LONG);
CHECKLEAFNONNAT(7, Pjp, Index, 1, JU_COPY7_PINDEX_TO_LONG);
break;
#endif // (JUDY1 && JU_64BIT)
// ****************************************************************************
// INVALID JP TYPE:
default:
ReturnCorrupt:
#ifdef JUDYGETINLINE // Pjpm is known to be non-null:
JU_SET_ERRNO_NONNULL(Pjpm, JU_ERRNO_CORRUPT);
#else
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
#endif
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
} // switch on JP type
JUDY1CODE(return(0);)
JUDYLCODE(return((PPvoid_t) NULL);)
} // Judy1Test() / JudyLGet()
#ifndef JUDYGETINLINE // only compile the following function once:
#ifdef DEBUG
// ****************************************************************************
// J U D Y C H E C K P O P
//
// Given a pointer to a Judy array, traverse the entire array to ensure
// population counts add up correctly. This can catch various coding errors.
//
// Since walking the entire tree is probably time-consuming, enable this
// function by setting env parameter $CHECKPOP to first call at which to start
// checking. Note: This function is called both from insert and delete code.
//
// Note: Even though this function does nothing useful for LEAFW leaves, its
// good practice to call it anyway, and cheap too.
//
// TBD: This is a debug-only check function similar to JudyCheckSorted(), but
// since it walks the tree it is Judy1/JudyL-specific and must live in a source
// file that is built both ways.
//
// TBD: As feared, enabling this code for every insert/delete makes Judy
// deathly slow, even for a small tree (10K indexes). Its not so bad if
// present but disabled (<1% slowdown measured). Still, should it be ifdefd
// other than DEBUG and/or called less often?
//
// TBD: Should this "population checker" be expanded to a comprehensive tree
// checker? It currently detects invalid LEAFW/JP types as well as inconsistent
// pop1s. Other possible checks, all based on essentially redundant data in
// the Judy tree, include:
//
// - Zero LS bits in jp_Addr field.
//
// - Correct Dcd bits.
//
// - Consistent JP types (always descending down the tree).
//
// - Sorted linear lists in BranchLs and leaves (using JudyCheckSorted(), but
// ideally that function is already called wherever appropriate after any
// linear list is modified).
//
// - Any others possible?
#include <stdlib.h> // for getenv() and atol().
static Word_t JudyCheckPopSM(Pjp_t Pjp, Word_t RootPop1);
FUNCTION void JudyCheckPop(
Pvoid_t PArray)
{
static bool_t checked = FALSE; // already checked env parameter.
static bool_t enabled = FALSE; // env parameter set.
static bool_t active = FALSE; // calls >= callsmin.
static Word_t callsmin; // start point from $CHECKPOP.
static Word_t calls = 0; // times called so far.
// CHECK FOR EXTERNAL ENABLING:
if (! checked) // only check once.
{
char * value; // for getenv().
checked = TRUE;
if ((value = getenv("CHECKPOP")) == (char *) NULL)
{
#ifdef notdef
// Take this out because nightly tests want to be flavor-independent; its not
// OK to emit special non-error output from the debug flavor:
(void) puts("JudyCheckPop() present but not enabled by "
"$CHECKPOP env parameter; set it to the number of "
"calls at which to begin checking");
#endif
return;
}
callsmin = atol(value); // note: non-number evaluates to 0.
enabled = TRUE;
(void) printf("JudyCheckPop() present and enabled; callsmin = "
"%lu\n", callsmin);
}
else if (! enabled) return;
// Previously or just now enabled; check if non-active or newly active:
if (! active)
{
if (++calls < callsmin) return;
(void) printf("JudyCheckPop() activated at call %lu\n", calls);
active = TRUE;
}
// IGNORE LEAFW AT TOP OF TREE:
if (JU_LEAFW_POP0(PArray) < cJU_LEAFW_MAXPOP1) // must be a LEAFW
return;
// Check JPM pop0 against tree, recursively:
//
// Note: The traversal code in JudyCheckPopSM() is simplest when the case
// statement for each JP type compares the pop1 for that JP to its subtree (if
// any) after traversing the subtree (thats the hard part) and adding up
// actual pop1s. A top branchs JP in the JPM does not have room for a
// full-word pop1, so pass it in as a special case.
{
Pjpm_t Pjpm = P_JPM(PArray);
(void) JudyCheckPopSM(&(Pjpm->jpm_JP), Pjpm->jpm_Pop0 + 1);
return;
}
} // JudyCheckPop()
// ****************************************************************************
// J U D Y C H E C K P O P S M
//
// Recursive state machine (subroutine) for JudyCheckPop(): Given a Pjp (other
// than JPNULL*; caller should shortcut) and the root population for top-level
// branches, check the subtrees actual pop1 against its nominal value, and
// return the total pop1 for the subtree.
//
// Note: Expect RootPop1 to be ignored at lower levels, so pass down 0, which
// should pop an assertion if this expectation is violated.
FUNCTION static Word_t JudyCheckPopSM(
Pjp_t Pjp, // top of subtree.
Word_t RootPop1) // whole array, for top-level branches only.
{
Word_t pop1_jp; // nominal population from the JP.
Word_t pop1 = 0; // actual population at this level.
Word_t offset; // in a branch.
#define PREPBRANCH(cPopBytes,Next) \
pop1_jp = JU_JPBRANCH_POP0(Pjp, cPopBytes) + 1; goto Next
assert((((Word_t) (Pjp->jp_Addr)) & 7) == 3);
switch (JU_JPTYPE(Pjp))
{
case cJU_JPBRANCH_L2: PREPBRANCH(2, BranchL);
case cJU_JPBRANCH_L3: PREPBRANCH(3, BranchL);
#ifdef JU_64BIT
case cJU_JPBRANCH_L4: PREPBRANCH(4, BranchL);
case cJU_JPBRANCH_L5: PREPBRANCH(5, BranchL);
case cJU_JPBRANCH_L6: PREPBRANCH(6, BranchL);
case cJU_JPBRANCH_L7: PREPBRANCH(7, BranchL);
#endif
case cJU_JPBRANCH_L: pop1_jp = RootPop1;
{
Pjbl_t Pjbl;
BranchL:
Pjbl = P_JBL(Pjp->jp_Addr);
for (offset = 0; offset < (Pjbl->jbl_NumJPs); ++offset)
pop1 += JudyCheckPopSM((Pjbl->jbl_jp) + offset, 0);
assert(pop1_jp == pop1);
return(pop1);
}
case cJU_JPBRANCH_B2: PREPBRANCH(2, BranchB);
case cJU_JPBRANCH_B3: PREPBRANCH(3, BranchB);
#ifdef JU_64BIT
case cJU_JPBRANCH_B4: PREPBRANCH(4, BranchB);
case cJU_JPBRANCH_B5: PREPBRANCH(5, BranchB);
case cJU_JPBRANCH_B6: PREPBRANCH(6, BranchB);
case cJU_JPBRANCH_B7: PREPBRANCH(7, BranchB);
#endif
case cJU_JPBRANCH_B: pop1_jp = RootPop1;
{
Word_t subexp;
Word_t jpcount;
Pjbb_t Pjbb;
BranchB:
Pjbb = P_JBB(Pjp->jp_Addr);
for (subexp = 0; subexp < cJU_NUMSUBEXPB; ++subexp)
{
jpcount = j__udyCountBitsB(JU_JBB_BITMAP(Pjbb, subexp));
for (offset = 0; offset < jpcount; ++offset)
{
pop1 += JudyCheckPopSM(P_JP(JU_JBB_PJP(Pjbb, subexp))
+ offset, 0);
}
}
assert(pop1_jp == pop1);
return(pop1);
}
case cJU_JPBRANCH_U2: PREPBRANCH(2, BranchU);
case cJU_JPBRANCH_U3: PREPBRANCH(3, BranchU);
#ifdef JU_64BIT
case cJU_JPBRANCH_U4: PREPBRANCH(4, BranchU);
case cJU_JPBRANCH_U5: PREPBRANCH(5, BranchU);
case cJU_JPBRANCH_U6: PREPBRANCH(6, BranchU);
case cJU_JPBRANCH_U7: PREPBRANCH(7, BranchU);
#endif
case cJU_JPBRANCH_U: pop1_jp = RootPop1;
{
Pjbu_t Pjbu;
BranchU:
Pjbu = P_JBU(Pjp->jp_Addr);
for (offset = 0; offset < cJU_BRANCHUNUMJPS; ++offset)
{
if (((Pjbu->jbu_jp[offset].jp_Type) >= cJU_JPNULL1)
&& ((Pjbu->jbu_jp[offset].jp_Type) <= cJU_JPNULLMAX))
{
continue; // skip null JP to save time.
}
pop1 += JudyCheckPopSM((Pjbu->jbu_jp) + offset, 0);
}
assert(pop1_jp == pop1);
return(pop1);
}
// -- Cases below here terminate and do not recurse. --
//
// For all of these cases except JPLEAF_B1, there is no way to check the JPs
// pop1 against the object itself; just return the pop1; but for linear leaves,
// a bounds check is possible.
#define CHECKLEAF(MaxPop1) \
pop1 = JU_JPLEAF_POP0(Pjp) + 1; \
assert(pop1 >= 1); \
assert(pop1 <= (MaxPop1)); \
return(pop1)
#if (defined(JUDYL) || (! defined(JU_64BIT)))
case cJU_JPLEAF1: CHECKLEAF(cJU_LEAF1_MAXPOP1);
#endif
case cJU_JPLEAF2: CHECKLEAF(cJU_LEAF2_MAXPOP1);
case cJU_JPLEAF3: CHECKLEAF(cJU_LEAF3_MAXPOP1);
#ifdef JU_64BIT
case cJU_JPLEAF4: CHECKLEAF(cJU_LEAF4_MAXPOP1);
case cJU_JPLEAF5: CHECKLEAF(cJU_LEAF5_MAXPOP1);
case cJU_JPLEAF6: CHECKLEAF(cJU_LEAF6_MAXPOP1);
case cJU_JPLEAF7: CHECKLEAF(cJU_LEAF7_MAXPOP1);
#endif
case cJU_JPLEAF_B1:
{
Word_t subexp;
Pjlb_t Pjlb;
pop1_jp = JU_JPLEAF_POP0(Pjp) + 1;
Pjlb = P_JLB(Pjp->jp_Addr);
for (subexp = 0; subexp < cJU_NUMSUBEXPL; ++subexp)
pop1 += j__udyCountBitsL(JU_JLB_BITMAP(Pjlb, subexp));
assert(pop1_jp == pop1);
return(pop1);
}
JUDY1CODE(case cJ1_JPFULLPOPU1: return(cJU_JPFULLPOPU1_POP0);)
case cJU_JPIMMED_1_01: return(1);
case cJU_JPIMMED_2_01: return(1);
case cJU_JPIMMED_3_01: return(1);
#ifdef JU_64BIT
case cJU_JPIMMED_4_01: return(1);
case cJU_JPIMMED_5_01: return(1);
case cJU_JPIMMED_6_01: return(1);
case cJU_JPIMMED_7_01: return(1);
#endif
case cJU_JPIMMED_1_02: return(2);
case cJU_JPIMMED_1_03: return(3);
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_1_04: return(4);
case cJU_JPIMMED_1_05: return(5);
case cJU_JPIMMED_1_06: return(6);
case cJU_JPIMMED_1_07: return(7);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_1_08: return(8);
case cJ1_JPIMMED_1_09: return(9);
case cJ1_JPIMMED_1_10: return(10);
case cJ1_JPIMMED_1_11: return(11);
case cJ1_JPIMMED_1_12: return(12);
case cJ1_JPIMMED_1_13: return(13);
case cJ1_JPIMMED_1_14: return(14);
case cJ1_JPIMMED_1_15: return(15);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_2_02: return(2);
case cJU_JPIMMED_2_03: return(3);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_2_04: return(4);
case cJ1_JPIMMED_2_05: return(5);
case cJ1_JPIMMED_2_06: return(6);
case cJ1_JPIMMED_2_07: return(7);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_3_02: return(2);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_3_03: return(3);
case cJ1_JPIMMED_3_04: return(4);
case cJ1_JPIMMED_3_05: return(5);
case cJ1_JPIMMED_4_02: return(2);
case cJ1_JPIMMED_4_03: return(3);
case cJ1_JPIMMED_5_02: return(2);
case cJ1_JPIMMED_5_03: return(3);
case cJ1_JPIMMED_6_02: return(2);
case cJ1_JPIMMED_7_02: return(2);
#endif
} // switch (JU_JPTYPE(Pjp))
assert(FALSE); // unrecognized JP type => corruption.
return(0); // to make some compilers happy.
} // JudyCheckPopSM()
#endif // DEBUG
#endif // ! JUDYGETINLINE