266 lines
6.9 KiB
C++
266 lines
6.9 KiB
C++
// vim: set sts=8 ts=2 sw=2 tw=99 et:
|
|
//
|
|
// Copyright (C) 2013, David Anderson and AlliedModders LLC
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice, this
|
|
// list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of AlliedModders LLC nor the names of its contributors
|
|
// may be used to endorse or promote products derived from this software
|
|
// without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef _INCLUDE_KEIMA_TPL_CPP_VECTOR_H_
|
|
#define _INCLUDE_KEIMA_TPL_CPP_VECTOR_H_
|
|
|
|
#include <new>
|
|
#include <stdlib.h>
|
|
#include <am-allocator-policies.h>
|
|
#include <am-utility.h>
|
|
#include <am-moveable.h>
|
|
|
|
namespace ke {
|
|
|
|
template <typename T, typename AllocPolicy = SystemAllocatorPolicy>
|
|
class Vector : public AllocPolicy
|
|
{
|
|
public:
|
|
Vector(AllocPolicy = AllocPolicy())
|
|
: data_(NULL),
|
|
nitems_(0),
|
|
maxsize_(0)
|
|
{
|
|
}
|
|
|
|
Vector(Moveable<Vector<T, AllocPolicy> > other) {
|
|
data_ = other->data_;
|
|
nitems_ = other->nitems_;
|
|
maxsize_ = other->maxsize_;
|
|
other->reset();
|
|
}
|
|
|
|
~Vector() {
|
|
zap();
|
|
}
|
|
|
|
bool append(const T &item) {
|
|
if (!growIfNeeded(1))
|
|
return false;
|
|
new (&data_[nitems_]) T(item);
|
|
nitems_++;
|
|
return true;
|
|
}
|
|
bool append(Moveable<T> item) {
|
|
if (!growIfNeeded(1))
|
|
return false;
|
|
new (&data_[nitems_]) T(item);
|
|
nitems_++;
|
|
return true;
|
|
}
|
|
void infallibleAppend(const T &item) {
|
|
assert(growIfNeeded(1));
|
|
new (&data_[nitems_]) T(item);
|
|
nitems_++;
|
|
}
|
|
void infallibleAppend(Moveable<T> item) {
|
|
assert(growIfNeeded(1));
|
|
new (&data_[nitems_]) T(item);
|
|
nitems_++;
|
|
}
|
|
|
|
// Shift all elements including |at| up by one, and insert |item| at the
|
|
// given position. If |at| is one greater than the last usable index,
|
|
// i.e. |at == length()|, then this is the same as append(). No other
|
|
// invalid indexes are allowed.
|
|
//
|
|
// This is a linear-time operation.
|
|
bool insert(size_t at, const T &item) {
|
|
if (at == length())
|
|
return append(item);
|
|
if (!moveUp(at))
|
|
return false;
|
|
new (&data_[at]) T(item);
|
|
return true;
|
|
}
|
|
bool insert(size_t at, Moveable<T> item) {
|
|
if (at == length())
|
|
return append(item);
|
|
if (!moveUp(at))
|
|
return false;
|
|
new (&data_[at]) T(item);
|
|
return true;
|
|
}
|
|
|
|
// Shift all elements at the given position down, removing the given
|
|
// element. This is a linear-time operation.
|
|
void remove(size_t at) {
|
|
for (size_t i = at; i < length() - 1; i++)
|
|
data_[i] = Moveable<T>(data_[i + 1]);
|
|
pop();
|
|
}
|
|
|
|
T popCopy() {
|
|
T t = at(length() - 1);
|
|
pop();
|
|
return t;
|
|
}
|
|
void pop() {
|
|
assert(nitems_);
|
|
data_[nitems_ - 1].~T();
|
|
nitems_--;
|
|
}
|
|
bool empty() const {
|
|
return length() == 0;
|
|
}
|
|
size_t length() const {
|
|
return nitems_;
|
|
}
|
|
T& at(size_t i) {
|
|
assert(i < length());
|
|
return data_[i];
|
|
}
|
|
const T& at(size_t i) const {
|
|
assert(i < length());
|
|
return data_[i];
|
|
}
|
|
T& operator [](size_t i) {
|
|
return at(i);
|
|
}
|
|
const T& operator [](size_t i) const {
|
|
return at(i);
|
|
}
|
|
void clear() {
|
|
nitems_ = 0;
|
|
}
|
|
const T &back() const {
|
|
return at(length() - 1);
|
|
}
|
|
T &back() {
|
|
return at(length() - 1);
|
|
}
|
|
|
|
T *buffer() const {
|
|
return data_;
|
|
}
|
|
|
|
bool resize(size_t newLength) {
|
|
if (newLength < length()) {
|
|
while (newLength < length())
|
|
pop();
|
|
} else if (newLength > length()) {
|
|
if (!ensure(newLength))
|
|
return false;
|
|
size_t count = newLength - length();
|
|
for (size_t i = 0; i < count; i++)
|
|
infallibleAppend(T());
|
|
}
|
|
return true;
|
|
}
|
|
bool ensure(size_t desired) {
|
|
if (desired <= length())
|
|
return true;
|
|
|
|
return growIfNeeded(desired - length());
|
|
}
|
|
|
|
Vector &operator =(Moveable<Vector<T, AllocPolicy> > other) {
|
|
data_ = other->data_;
|
|
nitems_ = other->nitems_;
|
|
maxsize_ = other->maxsize_;
|
|
other->reset();
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
// These are disallowed because they basically violate the failure handling
|
|
// model for AllocPolicies and are also likely to have abysmal performance.
|
|
Vector(const Vector<T> &other) KE_DELETE;
|
|
Vector &operator =(const Vector<T> &other) KE_DELETE;
|
|
|
|
private:
|
|
void zap() {
|
|
for (size_t i = 0; i < nitems_; i++)
|
|
data_[i].~T();
|
|
this->free(data_);
|
|
}
|
|
void reset() {
|
|
data_ = NULL;
|
|
nitems_ = 0;
|
|
maxsize_ = 0;
|
|
}
|
|
|
|
bool moveUp(size_t at) {
|
|
// Note: we don't use append() here. Passing an element as a Moveable into
|
|
// insert() or append() can break, since the underlying storage could be
|
|
// reallocated, invalidating the Moveable reference. Instead, we inline
|
|
// the logic to append() to ensure growIfNeeded occurs before any
|
|
// references are taken.
|
|
if (!growIfNeeded(1))
|
|
return false;
|
|
new (&data_[nitems_]) T(Moveable<T>(data_[nitems_ - 1]));
|
|
nitems_++;
|
|
for (size_t i = nitems_ - 2; i > at; i--)
|
|
data_[i] = Moveable<T>(data_[i - 1]);
|
|
return true;
|
|
}
|
|
|
|
bool growIfNeeded(size_t needed)
|
|
{
|
|
if (!IsUintPtrAddSafe(nitems_, needed)) {
|
|
this->reportAllocationOverflow();
|
|
return false;
|
|
}
|
|
if (nitems_ + needed < maxsize_)
|
|
return true;
|
|
|
|
size_t new_maxsize = maxsize_ ? maxsize_ : 8;
|
|
while (nitems_ + needed > new_maxsize) {
|
|
if (!IsUintPtrMultiplySafe(new_maxsize, 2)) {
|
|
this->reportAllocationOverflow();
|
|
return false;
|
|
}
|
|
new_maxsize *= 2;
|
|
}
|
|
|
|
T* newdata = (T*)this->malloc(sizeof(T) * new_maxsize);
|
|
if (newdata == NULL)
|
|
return false;
|
|
for (size_t i = 0; i < nitems_; i++) {
|
|
new (&newdata[i]) T(Moveable<T>(data_[i]));
|
|
data_[i].~T();
|
|
}
|
|
this->free(data_);
|
|
|
|
data_ = newdata;
|
|
maxsize_ = new_maxsize;
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
T* data_;
|
|
size_t nitems_;
|
|
size_t maxsize_;
|
|
};
|
|
|
|
}
|
|
|
|
#endif /* _INCLUDE_KEIMA_TPL_CPP_VECTOR_H_ */
|
|
|