1891 lines
59 KiB
C
1891 lines
59 KiB
C
// Copyright (C) 2000 - 2002 Hewlett-Packard Company
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify it
|
|
// under the term of the GNU Lesser General Public License as published by the
|
|
// Free Software Foundation; either version 2 of the License, or (at your
|
|
// option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
|
|
// for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with this program; if not, write to the Free Software Foundation,
|
|
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
// _________________
|
|
|
|
// @(#) $Revision$ $Source$
|
|
//
|
|
// Judy*Prev() and Judy*Next() functions for Judy1 and JudyL.
|
|
// Compile with one of -DJUDY1 or -DJUDYL.
|
|
//
|
|
// Compile with -DJUDYNEXT for the Judy*Next() function; otherwise defaults to
|
|
// Judy*Prev().
|
|
|
|
#if (! (defined(JUDY1) || defined(JUDYL)))
|
|
#error: One of -DJUDY1 or -DJUDYL must be specified.
|
|
#endif
|
|
|
|
#ifndef JUDYNEXT
|
|
#ifndef JUDYPREV
|
|
#define JUDYPREV 1 // neither set => use default.
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef JUDY1
|
|
#include "Judy1.h"
|
|
#else
|
|
#include "JudyL.h"
|
|
#endif
|
|
|
|
#include "JudyPrivate1L.h"
|
|
|
|
|
|
// ****************************************************************************
|
|
// J U D Y 1 P R E V
|
|
// J U D Y 1 N E X T
|
|
// J U D Y L P R E V
|
|
// J U D Y L N E X T
|
|
//
|
|
// See the manual entry for the API.
|
|
//
|
|
// OVERVIEW OF Judy*Prev():
|
|
//
|
|
// Use a reentrant switch statement (state machine, SM1 = "get") to decode the
|
|
// callers *PIndex-1, starting with the (PArray), through branches, if
|
|
// any, down to an immediate or a leaf. Look for *PIndex-1 in that leaf, and
|
|
// if found, return it.
|
|
//
|
|
// A dead end is either a branch that does not contain a JP for the appropriate
|
|
// digit in *PIndex-1, or a leaf that does not contain the undecoded digits of
|
|
// *PIndex-1. Upon reaching a dead end, backtrack through the leaf/branches
|
|
// that were just traversed, using a list (history) of parent JPs that is built
|
|
// while going forward in SM1Get. Start with the current leaf or branch. In a
|
|
// backtracked leaf, look for an Index less than *PIndex-1. In each
|
|
// backtracked branch, look "sideways" for the next JP, if any, lower than the
|
|
// one for the digit (from *PIndex-1) that was previously decoded. While
|
|
// backtracking, if a leaf has no previous Index or a branch has no lower JP,
|
|
// go to its parent branch in turn. Upon reaching the JRP, return failure, "no
|
|
// previous Index". The backtrack process is sufficiently different from
|
|
// SM1Get to merit its own separate reentrant switch statement (SM2 =
|
|
// "backtrack").
|
|
//
|
|
// While backtracking, upon finding a lower JP in a branch, there is certain to
|
|
// be a "prev" Index under that JP (unless the Judy array is corrupt).
|
|
// Traverse forward again, this time taking the last (highest, right-most) JP
|
|
// in each branch, and the last (highest) Index upon reaching an immediate or a
|
|
// leaf. This traversal is sufficiently different from SM1Get and SM2Backtrack
|
|
// to merit its own separate reentrant switch statement (SM3 = "findlimit").
|
|
//
|
|
// "Decode" bytes in JPs complicate this process a little. In SM1Get, when a
|
|
// JP is a narrow pointer, that is, when states are skipped (so the skipped
|
|
// digits are stored in jp_DcdPopO), compare the relevant digits to the same
|
|
// digits in *PIndex-1. If they are EQUAL, proceed in SM1Get as before. If
|
|
// jp_DcdPopOs digits are GREATER, treat the JP as a dead end and proceed in
|
|
// SM2Backtrack. If jp_DcdPopOs digits are LESS, treat the JP as if it had
|
|
// just been found during a backtrack and proceed directly in SM3Findlimit.
|
|
//
|
|
// Note that Decode bytes can be ignored in SM3Findlimit; they dont matter.
|
|
// Also note that in practice the Decode bytes are routinely compared with
|
|
// *PIndex-1 because thats simpler and no slower than first testing for
|
|
// narrowness.
|
|
//
|
|
// Decode bytes also make it unnecessary to construct the Index to return (the
|
|
// revised *PIndex) during the search. This step is deferred until finding an
|
|
// Index during backtrack or findlimit, before returning it. The first digit
|
|
// of *PIndex is derived (saved) based on which JP is used in a JRP branch.
|
|
// The remaining digits are obtained from the jp_DcdPopO field in the JP (if
|
|
// any) above the immediate or leaf containing the found (prev) Index, plus the
|
|
// remaining digit(s) in the immediate or leaf itself. In the case of a LEAFW,
|
|
// the Index to return is found directly in the leaf.
|
|
//
|
|
// Note: Theoretically, as described above, upon reaching a dead end, SM1Get
|
|
// passes control to SM2Backtrack to look sideways, even in a leaf. Actually
|
|
// its a little more efficient for the SM1Get leaf cases to shortcut this and
|
|
// take care of the sideways searches themselves. Hence the history list only
|
|
// contains branch JPs, and SM2Backtrack only handles branches. In fact, even
|
|
// the branch handling cases in SM1Get do some shortcutting (sideways
|
|
// searching) to avoid pushing history and calling SM2Backtrack unnecessarily.
|
|
//
|
|
// Upon reaching an Index to return after backtracking, *PIndex must be
|
|
// modified to the found Index. In principle this could be done by building
|
|
// the Index from a saved rootdigit (in the top branch) plus the Dcd bytes from
|
|
// the parent JP plus the appropriate Index bytes from the leaf. However,
|
|
// Immediates are difficult because their parent JPs lack one (last) digit. So
|
|
// instead just build the *PIndex to return "top down" while backtracking and
|
|
// findlimiting.
|
|
//
|
|
// This function is written iteratively for speed, rather than recursively.
|
|
//
|
|
// CAVEATS:
|
|
//
|
|
// Why use a backtrack list (history stack), since it has finite size? The
|
|
// size is small for Judy on both 32-bit and 64-bit systems, and a list (really
|
|
// just an array) is fast to maintain and use. Other alternatives include
|
|
// doing a lookahead (lookaside) in each branch while traversing forward
|
|
// (decoding), and restarting from the top upon a dead end.
|
|
//
|
|
// A lookahead means noting the last branch traversed which contained a
|
|
// non-null JP lower than the one specified by a digit in *PIndex-1, and
|
|
// returning to that point for SM3Findlimit. This seems like a good idea, and
|
|
// should be pretty cheap for linear and bitmap branches, but it could result
|
|
// in up to 31 unnecessary additional cache line fills (in extreme cases) for
|
|
// every uncompressed branch traversed. We have considered means of attaching
|
|
// to or hiding within an uncompressed branch (in null JPs) a "cache line map"
|
|
// or other structure, such as an offset to the next non-null JP, that would
|
|
// speed this up, but it seems unnecessary merely to avoid having a
|
|
// finite-length list (array). (If JudySL is ever made "native", the finite
|
|
// list length will be an issue.)
|
|
//
|
|
// Restarting at the top of the Judy array after a dead end requires a careful
|
|
// modification of *PIndex-1 to decrement the digit for the parent branch and
|
|
// set the remaining lower digits to all 1s. This must be repeated each time a
|
|
// parent branch contains another dead end, so even though it should all happen
|
|
// in cache, the CPU time can be excessive. (For JudySL or an equivalent
|
|
// "infinitely deep" Judy array, consider a hybrid of a large, finite,
|
|
// "circular" list and a restart-at-top when the list is backtracked to
|
|
// exhaustion.)
|
|
//
|
|
// Why search for *PIndex-1 instead of *PIndex during SM1Get? In rare
|
|
// instances this prevents an unnecessary decode down the wrong path followed
|
|
// by a backtrack; its pretty cheap to set up initially; and it means the
|
|
// SM1Get machine can simply return if/when it finds that Index.
|
|
//
|
|
// TBD: Wed like to enhance this function to make successive searches faster.
|
|
// This would require saving some previous state, including the previous Index
|
|
// returned, and in which leaf it was found. If the next call is for the same
|
|
// Index and the array has not been modified, start at the same leaf. This
|
|
// should be much easier to implement since this is iterative rather than
|
|
// recursive code.
|
|
//
|
|
// VARIATIONS FOR Judy*Next():
|
|
//
|
|
// The Judy*Next() code is nearly a perfect mirror of the Judy*Prev() code.
|
|
// See the Judy*Prev() overview comments, and mentally switch the following:
|
|
//
|
|
// - "*PIndex-1" => "*PIndex+1"
|
|
// - "less than" => "greater than"
|
|
// - "lower" => "higher"
|
|
// - "lowest" => "highest"
|
|
// - "next-left" => "next-right"
|
|
// - "right-most" => "left-most"
|
|
//
|
|
// Note: SM3Findlimit could be called SM3Findmax/SM3Findmin, but a common name
|
|
// for both Prev and Next means many fewer ifdefs in this code.
|
|
//
|
|
// TBD: Currently this code traverses a JP whether its expanse is partially or
|
|
// completely full (populated). For Judy1 (only), since there is no value area
|
|
// needed, consider shortcutting to a "success" return upon encountering a full
|
|
// JP in SM1Get (or even SM3Findlimit?) A full JP looks like this:
|
|
//
|
|
// (((JU_JPDCDPOP0(Pjp) ^ cJU_ALLONES) & cJU_POP0MASK(cLevel)) == 0)
|
|
|
|
#ifdef JUDY1
|
|
#ifdef JUDYPREV
|
|
FUNCTION int Judy1Prev
|
|
#else
|
|
FUNCTION int Judy1Next
|
|
#endif
|
|
#else
|
|
#ifdef JUDYPREV
|
|
FUNCTION PPvoid_t JudyLPrev
|
|
#else
|
|
FUNCTION PPvoid_t JudyLNext
|
|
#endif
|
|
#endif
|
|
(
|
|
Pcvoid_t PArray, // Judy array to search.
|
|
Word_t * PIndex, // starting point and result.
|
|
PJError_t PJError // optional, for returning error info.
|
|
)
|
|
{
|
|
Pjp_t Pjp, Pjp2; // current JPs.
|
|
Pjbl_t Pjbl; // Pjp->jp_Addr masked and cast to types:
|
|
Pjbb_t Pjbb;
|
|
Pjbu_t Pjbu;
|
|
|
|
// Note: The following initialization is not strictly required but it makes
|
|
// gcc -Wall happy because there is an "impossible" path from Immed handling to
|
|
// SM1LeafLImm code that looks like Pjll might be used before set:
|
|
|
|
Pjll_t Pjll = (Pjll_t) NULL;
|
|
Word_t state; // current state in SM.
|
|
Word_t digit; // next digit to decode from Index.
|
|
|
|
// Note: The following initialization is not strictly required but it makes
|
|
// gcc -Wall happy because there is an "impossible" path from Immed handling to
|
|
// SM1LeafLImm code (for JudyL & JudyPrev only) that looks like pop1 might be
|
|
// used before set:
|
|
|
|
#if (defined(JUDYL) && defined(JUDYPREV))
|
|
Word_t pop1 = 0; // in a leaf.
|
|
#else
|
|
Word_t pop1; // in a leaf.
|
|
#endif
|
|
int offset; // linear branch/leaf, from j__udySearchLeaf*().
|
|
int subexp; // subexpanse in a bitmap branch.
|
|
Word_t bitposmask; // bit in bitmap for Index.
|
|
|
|
// History for SM2Backtrack:
|
|
//
|
|
// For a given histnum, APjphist[histnum] is a parent JP that points to a
|
|
// branch, and Aoffhist[histnum] is the offset of the NEXT JP in the branch to
|
|
// which the parent JP points. The meaning of Aoffhist[histnum] depends on the
|
|
// type of branch to which the parent JP points:
|
|
//
|
|
// Linear: Offset of the next JP in the JP list.
|
|
//
|
|
// Bitmap: Which subexpanse, plus the offset of the next JP in the
|
|
// subexpanses JP list (to avoid bit-counting again), plus for Judy*Next(),
|
|
// hidden one byte to the left, which digit, because Judy*Next() also needs
|
|
// this.
|
|
//
|
|
// Uncompressed: Digit, which is actually the offset of the JP in the branch.
|
|
//
|
|
// Note: Only branch JPs are stored in APjphist[] because, as explained
|
|
// earlier, SM1Get shortcuts sideways searches in leaves (and even in branches
|
|
// in some cases), so SM2Backtrack only handles branches.
|
|
|
|
#define HISTNUMMAX cJU_ROOTSTATE // maximum branches traversable.
|
|
Pjp_t APjphist[HISTNUMMAX]; // list of branch JPs traversed.
|
|
int Aoffhist[HISTNUMMAX]; // list of next JP offsets; see above.
|
|
int histnum = 0; // number of JPs now in list.
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// M A C R O S
|
|
//
|
|
// These are intended to make the code a bit more readable and less redundant.
|
|
|
|
|
|
// "PUSH" AND "POP" Pjp AND offset ON HISTORY STACKS:
|
|
//
|
|
// Note: Ensure a corrupt Judy array does not overflow *hist[]. Meanwhile,
|
|
// underflowing *hist[] simply means theres no more room to backtrack =>
|
|
// "no previous/next Index".
|
|
|
|
#define HISTPUSH(Pjp,Offset) \
|
|
APjphist[histnum] = (Pjp); \
|
|
Aoffhist[histnum] = (Offset); \
|
|
\
|
|
if (++histnum >= HISTNUMMAX) \
|
|
{ \
|
|
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT) \
|
|
JUDY1CODE(return(JERRI );) \
|
|
JUDYLCODE(return(PPJERR);) \
|
|
}
|
|
|
|
#define HISTPOP(Pjp,Offset) \
|
|
if ((histnum--) < 1) JU_RET_NOTFOUND; \
|
|
(Pjp) = APjphist[histnum]; \
|
|
(Offset) = Aoffhist[histnum]
|
|
|
|
// How to pack/unpack Aoffhist[] values for bitmap branches:
|
|
|
|
#ifdef JUDYPREV
|
|
|
|
#define HISTPUSHBOFF(Subexp,Offset,Digit) \
|
|
(((Subexp) * cJU_BITSPERSUBEXPB) | (Offset))
|
|
|
|
#define HISTPOPBOFF(Subexp,Offset,Digit) \
|
|
(Subexp) = (Offset) / cJU_BITSPERSUBEXPB; \
|
|
(Offset) %= cJU_BITSPERSUBEXPB
|
|
#else
|
|
|
|
#define HISTPUSHBOFF(Subexp,Offset,Digit) \
|
|
(((Digit) << cJU_BITSPERBYTE) \
|
|
| ((Subexp) * cJU_BITSPERSUBEXPB) | (Offset))
|
|
|
|
#define HISTPOPBOFF(Subexp,Offset,Digit) \
|
|
(Digit) = (Offset) >> cJU_BITSPERBYTE; \
|
|
(Subexp) = ((Offset) & JU_LEASTBYTESMASK(1)) / cJU_BITSPERSUBEXPB; \
|
|
(Offset) %= cJU_BITSPERSUBEXPB
|
|
#endif
|
|
|
|
|
|
// CHECK FOR NULL JP:
|
|
|
|
#define JPNULL(Type) (((Type) >= cJU_JPNULL1) && ((Type) <= cJU_JPNULLMAX))
|
|
|
|
|
|
// SEARCH A BITMAP:
|
|
//
|
|
// This is a weak analog of j__udySearchLeaf*() for bitmaps. Return the actual
|
|
// or next-left position, base 0, of Digit in the single uint32_t bitmap, also
|
|
// given a Bitposmask for Digit.
|
|
//
|
|
// Unlike j__udySearchLeaf*(), the offset is not returned bit-complemented if
|
|
// Digits bit is unset, because the caller can check the bitmap themselves to
|
|
// determine that. Also, if Digits bit is unset, the returned offset is to
|
|
// the next-left JP (including -1), not to the "ideal" position for the Index =
|
|
// next-right JP.
|
|
//
|
|
// Shortcut and skip calling j__udyCountBits*() if the bitmap is full, in which
|
|
// case (Digit % cJU_BITSPERSUBEXP*) itself is the base-0 offset.
|
|
//
|
|
// TBD for Judy*Next(): Should this return next-right instead of next-left?
|
|
// That is, +1 from current value? Maybe not, if Digits bit IS set, +1 would
|
|
// be wrong.
|
|
|
|
#define SEARCHBITMAPB(Bitmap,Digit,Bitposmask) \
|
|
(((Bitmap) == cJU_FULLBITMAPB) ? (Digit % cJU_BITSPERSUBEXPB) : \
|
|
j__udyCountBitsB((Bitmap) & JU_MASKLOWERINC(Bitposmask)) - 1)
|
|
|
|
#define SEARCHBITMAPL(Bitmap,Digit,Bitposmask) \
|
|
(((Bitmap) == cJU_FULLBITMAPL) ? (Digit % cJU_BITSPERSUBEXPL) : \
|
|
j__udyCountBitsL((Bitmap) & JU_MASKLOWERINC(Bitposmask)) - 1)
|
|
|
|
#ifdef JUDYPREV
|
|
// Equivalent to search for the highest offset in Bitmap:
|
|
|
|
#define SEARCHBITMAPMAXB(Bitmap) \
|
|
(((Bitmap) == cJU_FULLBITMAPB) ? cJU_BITSPERSUBEXPB - 1 : \
|
|
j__udyCountBitsB(Bitmap) - 1)
|
|
|
|
#define SEARCHBITMAPMAXL(Bitmap) \
|
|
(((Bitmap) == cJU_FULLBITMAPL) ? cJU_BITSPERSUBEXPL - 1 : \
|
|
j__udyCountBitsL(Bitmap) - 1)
|
|
#endif
|
|
|
|
|
|
// CHECK DECODE BYTES:
|
|
//
|
|
// Check Decode bytes in a JP against the equivalent portion of *PIndex. If
|
|
// *PIndex is lower (for Judy*Prev()) or higher (for Judy*Next()), this JP is a
|
|
// dead end (the same as if it had been absent in a linear or bitmap branch or
|
|
// null in an uncompressed branch), enter SM2Backtrack; otherwise enter
|
|
// SM3Findlimit to find the highest/lowest Index under this JP, as if the code
|
|
// had already backtracked to this JP.
|
|
|
|
#ifdef JUDYPREV
|
|
#define CDcmp__ <
|
|
#else
|
|
#define CDcmp__ >
|
|
#endif
|
|
|
|
#define CHECKDCD(cState) \
|
|
if (JU_DCDNOTMATCHINDEX(*PIndex, Pjp, cState)) \
|
|
{ \
|
|
if ((*PIndex & cJU_DCDMASK(cState)) \
|
|
CDcmp__(JU_JPDCDPOP0(Pjp) & cJU_DCDMASK(cState))) \
|
|
{ \
|
|
goto SM2Backtrack; \
|
|
} \
|
|
goto SM3Findlimit; \
|
|
}
|
|
|
|
|
|
// PREPARE TO HANDLE A LEAFW OR JRP BRANCH IN SM1:
|
|
//
|
|
// Extract a state-dependent digit from Index in a "constant" way, then jump to
|
|
// common code for multiple cases.
|
|
|
|
#define SM1PREPB(cState,Next) \
|
|
state = (cState); \
|
|
digit = JU_DIGITATSTATE(*PIndex, cState); \
|
|
goto Next
|
|
|
|
|
|
// PREPARE TO HANDLE A LEAFW OR JRP BRANCH IN SM3:
|
|
//
|
|
// Optionally save Dcd bytes into *PIndex, then save state and jump to common
|
|
// code for multiple cases.
|
|
|
|
#define SM3PREPB_DCD(cState,Next) \
|
|
JU_SETDCD(*PIndex, Pjp, cState); \
|
|
SM3PREPB(cState,Next)
|
|
|
|
#define SM3PREPB(cState,Next) state = (cState); goto Next
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// CHECK FOR SHORTCUTS:
|
|
//
|
|
// Error out if PIndex is null. Execute JU_RET_NOTFOUND if the Judy array is
|
|
// empty or *PIndex is already the minimum/maximum Index possible.
|
|
//
|
|
// Note: As documented, in case of failure *PIndex may be modified.
|
|
|
|
if (PIndex == (PWord_t) NULL)
|
|
{
|
|
JU_SET_ERRNO(PJError, JU_ERRNO_NULLPINDEX);
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
}
|
|
|
|
#ifdef JUDYPREV
|
|
if ((PArray == (Pvoid_t) NULL) || ((*PIndex)-- == 0))
|
|
#else
|
|
if ((PArray == (Pvoid_t) NULL) || ((*PIndex)++ == cJU_ALLONES))
|
|
#endif
|
|
JU_RET_NOTFOUND;
|
|
|
|
|
|
// HANDLE JRP:
|
|
//
|
|
// Before even entering SM1Get, check the JRP type. For JRP branches, traverse
|
|
// the JPM; handle LEAFW leaves directly; but look for the most common cases
|
|
// first.
|
|
|
|
// ROOT-STATE LEAF that starts with a Pop0 word; just look within the leaf:
|
|
//
|
|
// If *PIndex is in the leaf, return it; otherwise return the Index, if any,
|
|
// below where it would belong.
|
|
|
|
if (JU_LEAFW_POP0(PArray) < cJU_LEAFW_MAXPOP1) // must be a LEAFW
|
|
{
|
|
Pjlw_t Pjlw = P_JLW(PArray); // first word of leaf.
|
|
pop1 = Pjlw[0] + 1;
|
|
|
|
if ((offset = j__udySearchLeafW(Pjlw + 1, pop1, *PIndex))
|
|
>= 0) // Index is present.
|
|
{
|
|
assert(offset < pop1); // in expected range.
|
|
JU_RET_FOUND_LEAFW(Pjlw, pop1, offset); // *PIndex is set.
|
|
}
|
|
|
|
#ifdef JUDYPREV
|
|
if ((offset = ~offset) == 0) // no next-left Index.
|
|
#else
|
|
if ((offset = ~offset) >= pop1) // no next-right Index.
|
|
#endif
|
|
JU_RET_NOTFOUND;
|
|
|
|
assert(offset <= pop1); // valid result.
|
|
|
|
#ifdef JUDYPREV
|
|
*PIndex = Pjlw[offset--]; // next-left Index, base 1.
|
|
#else
|
|
*PIndex = Pjlw[offset + 1]; // next-right Index, base 1.
|
|
#endif
|
|
JU_RET_FOUND_LEAFW(Pjlw, pop1, offset); // base 0.
|
|
|
|
}
|
|
else // JRP BRANCH
|
|
{
|
|
Pjpm_t Pjpm = P_JPM(PArray);
|
|
Pjp = &(Pjpm->jpm_JP);
|
|
|
|
// goto SM1Get;
|
|
}
|
|
|
|
// ============================================================================
|
|
// STATE MACHINE 1 -- GET INDEX:
|
|
//
|
|
// Search for *PIndex (already decremented/incremented so as to be inclusive).
|
|
// If found, return it. Otherwise in theory hand off to SM2Backtrack or
|
|
// SM3Findlimit, but in practice "shortcut" by first sideways searching the
|
|
// current branch or leaf upon hitting a dead end. During sideways search,
|
|
// modify *PIndex to a new path taken.
|
|
//
|
|
// ENTRY: Pjp points to next JP to interpret, whose Decode bytes have not yet
|
|
// been checked. This JP is not yet listed in history.
|
|
//
|
|
// Note: Check Decode bytes at the start of each loop, not after looking up a
|
|
// new JP, so its easy to do constant shifts/masks, although this requires
|
|
// cautious handling of Pjp, offset, and *hist[] for correct entry to
|
|
// SM2Backtrack.
|
|
//
|
|
// EXIT: Return, or branch to SM2Backtrack or SM3Findlimit with correct
|
|
// interface, as described elsewhere.
|
|
//
|
|
// WARNING: For run-time efficiency the following cases replicate code with
|
|
// varying constants, rather than using common code with variable values!
|
|
|
|
SM1Get: // return here for next branch/leaf.
|
|
|
|
switch (JU_JPTYPE(Pjp))
|
|
{
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// LINEAR BRANCH:
|
|
//
|
|
// Check Decode bytes, if any, in the current JP, then search for a JP for the
|
|
// next digit in *PIndex.
|
|
|
|
case cJU_JPBRANCH_L2: CHECKDCD(2); SM1PREPB(2, SM1BranchL);
|
|
case cJU_JPBRANCH_L3: CHECKDCD(3); SM1PREPB(3, SM1BranchL);
|
|
#ifdef JU_64BIT
|
|
case cJU_JPBRANCH_L4: CHECKDCD(4); SM1PREPB(4, SM1BranchL);
|
|
case cJU_JPBRANCH_L5: CHECKDCD(5); SM1PREPB(5, SM1BranchL);
|
|
case cJU_JPBRANCH_L6: CHECKDCD(6); SM1PREPB(6, SM1BranchL);
|
|
case cJU_JPBRANCH_L7: CHECKDCD(7); SM1PREPB(7, SM1BranchL);
|
|
#endif
|
|
case cJU_JPBRANCH_L: SM1PREPB(cJU_ROOTSTATE, SM1BranchL);
|
|
|
|
// Common code (state-independent) for all cases of linear branches:
|
|
|
|
SM1BranchL:
|
|
Pjbl = P_JBL(Pjp->jp_Addr);
|
|
|
|
// Found JP matching current digit in *PIndex; record parent JP and the next
|
|
// JPs offset, and iterate to the next JP:
|
|
|
|
if ((offset = j__udySearchLeaf1((Pjll_t) (Pjbl->jbl_Expanse),
|
|
Pjbl->jbl_NumJPs, digit)) >= 0)
|
|
{
|
|
HISTPUSH(Pjp, offset);
|
|
Pjp = (Pjbl->jbl_jp) + offset;
|
|
goto SM1Get;
|
|
}
|
|
|
|
// Dead end, no JP in BranchL for next digit in *PIndex:
|
|
//
|
|
// Get the ideal location of digits JP, and if theres no next-left/right JP
|
|
// in the BranchL, shortcut and start backtracking one level up; ignore the
|
|
// current Pjp because it points to a BranchL with no next-left/right JP.
|
|
|
|
#ifdef JUDYPREV
|
|
if ((offset = (~offset) - 1) < 0) // no next-left JP in BranchL.
|
|
#else
|
|
if ((offset = (~offset)) >= Pjbl->jbl_NumJPs) // no next-right.
|
|
#endif
|
|
goto SM2Backtrack;
|
|
|
|
// Theres a next-left/right JP in the current BranchL; save its digit in
|
|
// *PIndex and shortcut to SM3Findlimit:
|
|
|
|
JU_SETDIGIT(*PIndex, Pjbl->jbl_Expanse[offset], state);
|
|
Pjp = (Pjbl->jbl_jp) + offset;
|
|
goto SM3Findlimit;
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// BITMAP BRANCH:
|
|
//
|
|
// Check Decode bytes, if any, in the current JP, then look for a JP for the
|
|
// next digit in *PIndex.
|
|
|
|
case cJU_JPBRANCH_B2: CHECKDCD(2); SM1PREPB(2, SM1BranchB);
|
|
case cJU_JPBRANCH_B3: CHECKDCD(3); SM1PREPB(3, SM1BranchB);
|
|
#ifdef JU_64BIT
|
|
case cJU_JPBRANCH_B4: CHECKDCD(4); SM1PREPB(4, SM1BranchB);
|
|
case cJU_JPBRANCH_B5: CHECKDCD(5); SM1PREPB(5, SM1BranchB);
|
|
case cJU_JPBRANCH_B6: CHECKDCD(6); SM1PREPB(6, SM1BranchB);
|
|
case cJU_JPBRANCH_B7: CHECKDCD(7); SM1PREPB(7, SM1BranchB);
|
|
#endif
|
|
case cJU_JPBRANCH_B: SM1PREPB(cJU_ROOTSTATE, SM1BranchB);
|
|
|
|
// Common code (state-independent) for all cases of bitmap branches:
|
|
|
|
SM1BranchB:
|
|
Pjbb = P_JBB(Pjp->jp_Addr);
|
|
|
|
// Locate the digits JP in the subexpanse list, if present, otherwise the
|
|
// offset of the next-left JP, if any:
|
|
|
|
subexp = digit / cJU_BITSPERSUBEXPB;
|
|
assert(subexp < cJU_NUMSUBEXPB); // falls in expected range.
|
|
bitposmask = JU_BITPOSMASKB(digit);
|
|
offset = SEARCHBITMAPB(JU_JBB_BITMAP(Pjbb, subexp), digit,
|
|
bitposmask);
|
|
// right range:
|
|
assert((offset >= -1) && (offset < (int) cJU_BITSPERSUBEXPB));
|
|
|
|
// Found JP matching current digit in *PIndex:
|
|
//
|
|
// Record the parent JP and the next JPs offset; and iterate to the next JP.
|
|
|
|
// if (JU_BITMAPTESTB(Pjbb, digit)) // slower.
|
|
if (JU_JBB_BITMAP(Pjbb, subexp) & bitposmask) // faster.
|
|
{
|
|
// not negative since at least one bit is set:
|
|
assert(offset >= 0);
|
|
|
|
HISTPUSH(Pjp, HISTPUSHBOFF(subexp, offset, digit));
|
|
|
|
if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp))) == (Pjp_t) NULL)
|
|
{
|
|
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
}
|
|
|
|
Pjp += offset;
|
|
goto SM1Get; // iterate to next JP.
|
|
}
|
|
|
|
// Dead end, no JP in BranchB for next digit in *PIndex:
|
|
//
|
|
// If theres a next-left/right JP in the current BranchB, shortcut to
|
|
// SM3Findlimit. Note: offset is already set to the correct value for the
|
|
// next-left/right JP.
|
|
|
|
#ifdef JUDYPREV
|
|
if (offset >= 0) // next-left JP is in this subexpanse.
|
|
goto SM1BranchBFindlimit;
|
|
|
|
while (--subexp >= 0) // search next-left subexpanses.
|
|
#else
|
|
if (JU_JBB_BITMAP(Pjbb, subexp) & JU_MASKHIGHEREXC(bitposmask))
|
|
{
|
|
++offset; // next-left => next-right.
|
|
goto SM1BranchBFindlimit;
|
|
}
|
|
|
|
while (++subexp < cJU_NUMSUBEXPB) // search next-right subexps.
|
|
#endif
|
|
{
|
|
if (! JU_JBB_PJP(Pjbb, subexp)) continue; // empty subexpanse.
|
|
|
|
#ifdef JUDYPREV
|
|
offset = SEARCHBITMAPMAXB(JU_JBB_BITMAP(Pjbb, subexp));
|
|
// expected range:
|
|
assert((offset >= 0) && (offset < cJU_BITSPERSUBEXPB));
|
|
#else
|
|
offset = 0;
|
|
#endif
|
|
|
|
// Save the next-left/right JPs digit in *PIndex:
|
|
|
|
SM1BranchBFindlimit:
|
|
JU_BITMAPDIGITB(digit, subexp, JU_JBB_BITMAP(Pjbb, subexp),
|
|
offset);
|
|
JU_SETDIGIT(*PIndex, digit, state);
|
|
|
|
if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp))) == (Pjp_t) NULL)
|
|
{
|
|
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
}
|
|
|
|
Pjp += offset;
|
|
goto SM3Findlimit;
|
|
}
|
|
|
|
// Theres no next-left/right JP in the BranchB:
|
|
//
|
|
// Shortcut and start backtracking one level up; ignore the current Pjp because
|
|
// it points to a BranchB with no next-left/right JP.
|
|
|
|
goto SM2Backtrack;
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// UNCOMPRESSED BRANCH:
|
|
//
|
|
// Check Decode bytes, if any, in the current JP, then look for a JP for the
|
|
// next digit in *PIndex.
|
|
|
|
case cJU_JPBRANCH_U2: CHECKDCD(2); SM1PREPB(2, SM1BranchU);
|
|
case cJU_JPBRANCH_U3: CHECKDCD(3); SM1PREPB(3, SM1BranchU);
|
|
#ifdef JU_64BIT
|
|
case cJU_JPBRANCH_U4: CHECKDCD(4); SM1PREPB(4, SM1BranchU);
|
|
case cJU_JPBRANCH_U5: CHECKDCD(5); SM1PREPB(5, SM1BranchU);
|
|
case cJU_JPBRANCH_U6: CHECKDCD(6); SM1PREPB(6, SM1BranchU);
|
|
case cJU_JPBRANCH_U7: CHECKDCD(7); SM1PREPB(7, SM1BranchU);
|
|
#endif
|
|
case cJU_JPBRANCH_U: SM1PREPB(cJU_ROOTSTATE, SM1BranchU);
|
|
|
|
// Common code (state-independent) for all cases of uncompressed branches:
|
|
|
|
SM1BranchU:
|
|
Pjbu = P_JBU(Pjp->jp_Addr);
|
|
Pjp2 = (Pjbu->jbu_jp) + digit;
|
|
|
|
// Found JP matching current digit in *PIndex:
|
|
//
|
|
// Record the parent JP and the next JPs digit, and iterate to the next JP.
|
|
//
|
|
// TBD: Instead of this, just goto SM1Get, and add cJU_JPNULL* cases to the
|
|
// SM1Get state machine? Then backtrack? However, it means you cant detect
|
|
// an inappropriate cJU_JPNULL*, when it occurs in other than a BranchU, and
|
|
// return JU_RET_CORRUPT.
|
|
|
|
if (! JPNULL(JU_JPTYPE(Pjp2))) // digit has a JP.
|
|
{
|
|
HISTPUSH(Pjp, digit);
|
|
Pjp = Pjp2;
|
|
goto SM1Get;
|
|
}
|
|
|
|
// Dead end, no JP in BranchU for next digit in *PIndex:
|
|
//
|
|
// Search for a next-left/right JP in the current BranchU, and if one is found,
|
|
// save its digit in *PIndex and shortcut to SM3Findlimit:
|
|
|
|
#ifdef JUDYPREV
|
|
while (digit >= 1)
|
|
{
|
|
Pjp = (Pjbu->jbu_jp) + (--digit);
|
|
#else
|
|
while (digit < cJU_BRANCHUNUMJPS - 1)
|
|
{
|
|
Pjp = (Pjbu->jbu_jp) + (++digit);
|
|
#endif
|
|
if (JPNULL(JU_JPTYPE(Pjp))) continue;
|
|
|
|
JU_SETDIGIT(*PIndex, digit, state);
|
|
goto SM3Findlimit;
|
|
}
|
|
|
|
// Theres no next-left/right JP in the BranchU:
|
|
//
|
|
// Shortcut and start backtracking one level up; ignore the current Pjp because
|
|
// it points to a BranchU with no next-left/right JP.
|
|
|
|
goto SM2Backtrack;
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// LINEAR LEAF:
|
|
//
|
|
// Check Decode bytes, if any, in the current JP, then search the leaf for
|
|
// *PIndex.
|
|
|
|
#define SM1LEAFL(Func) \
|
|
Pjll = P_JLL(Pjp->jp_Addr); \
|
|
pop1 = JU_JPLEAF_POP0(Pjp) + 1; \
|
|
offset = Func(Pjll, pop1, *PIndex); \
|
|
goto SM1LeafLImm
|
|
|
|
#if (defined(JUDYL) || (! defined(JU_64BIT)))
|
|
case cJU_JPLEAF1: CHECKDCD(1); SM1LEAFL(j__udySearchLeaf1);
|
|
#endif
|
|
case cJU_JPLEAF2: CHECKDCD(2); SM1LEAFL(j__udySearchLeaf2);
|
|
case cJU_JPLEAF3: CHECKDCD(3); SM1LEAFL(j__udySearchLeaf3);
|
|
|
|
#ifdef JU_64BIT
|
|
case cJU_JPLEAF4: CHECKDCD(4); SM1LEAFL(j__udySearchLeaf4);
|
|
case cJU_JPLEAF5: CHECKDCD(5); SM1LEAFL(j__udySearchLeaf5);
|
|
case cJU_JPLEAF6: CHECKDCD(6); SM1LEAFL(j__udySearchLeaf6);
|
|
case cJU_JPLEAF7: CHECKDCD(7); SM1LEAFL(j__udySearchLeaf7);
|
|
#endif
|
|
|
|
// Common code (state-independent) for all cases of linear leaves and
|
|
// immediates:
|
|
|
|
SM1LeafLImm:
|
|
if (offset >= 0) // *PIndex is in LeafL / Immed.
|
|
#ifdef JUDY1
|
|
JU_RET_FOUND;
|
|
#else
|
|
{ // JudyL is trickier...
|
|
switch (JU_JPTYPE(Pjp))
|
|
{
|
|
#if (defined(JUDYL) || (! defined(JU_64BIT)))
|
|
case cJU_JPLEAF1: JU_RET_FOUND_LEAF1(Pjll, pop1, offset);
|
|
#endif
|
|
case cJU_JPLEAF2: JU_RET_FOUND_LEAF2(Pjll, pop1, offset);
|
|
case cJU_JPLEAF3: JU_RET_FOUND_LEAF3(Pjll, pop1, offset);
|
|
#ifdef JU_64BIT
|
|
case cJU_JPLEAF4: JU_RET_FOUND_LEAF4(Pjll, pop1, offset);
|
|
case cJU_JPLEAF5: JU_RET_FOUND_LEAF5(Pjll, pop1, offset);
|
|
case cJU_JPLEAF6: JU_RET_FOUND_LEAF6(Pjll, pop1, offset);
|
|
case cJU_JPLEAF7: JU_RET_FOUND_LEAF7(Pjll, pop1, offset);
|
|
#endif
|
|
|
|
case cJU_JPIMMED_1_01:
|
|
case cJU_JPIMMED_2_01:
|
|
case cJU_JPIMMED_3_01:
|
|
#ifdef JU_64BIT
|
|
case cJU_JPIMMED_4_01:
|
|
case cJU_JPIMMED_5_01:
|
|
case cJU_JPIMMED_6_01:
|
|
case cJU_JPIMMED_7_01:
|
|
#endif
|
|
JU_RET_FOUND_IMM_01(Pjp);
|
|
|
|
case cJU_JPIMMED_1_02:
|
|
case cJU_JPIMMED_1_03:
|
|
#ifdef JU_64BIT
|
|
case cJU_JPIMMED_1_04:
|
|
case cJU_JPIMMED_1_05:
|
|
case cJU_JPIMMED_1_06:
|
|
case cJU_JPIMMED_1_07:
|
|
case cJU_JPIMMED_2_02:
|
|
case cJU_JPIMMED_2_03:
|
|
case cJU_JPIMMED_3_02:
|
|
#endif
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
}
|
|
|
|
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT); // impossible?
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
|
|
} // found *PIndex
|
|
|
|
#endif // JUDYL
|
|
|
|
// Dead end, no Index in LeafL / Immed for remaining digit(s) in *PIndex:
|
|
//
|
|
// Get the ideal location of Index, and if theres no next-left/right Index in
|
|
// the LeafL / Immed, shortcut and start backtracking one level up; ignore the
|
|
// current Pjp because it points to a LeafL / Immed with no next-left/right
|
|
// Index.
|
|
|
|
#ifdef JUDYPREV
|
|
if ((offset = (~offset) - 1) < 0) // no next-left Index.
|
|
#else
|
|
if ((offset = (~offset)) >= pop1) // no next-right Index.
|
|
#endif
|
|
goto SM2Backtrack;
|
|
|
|
// Theres a next-left/right Index in the current LeafL / Immed; shortcut by
|
|
// copying its digit(s) to *PIndex and returning it.
|
|
//
|
|
// Unfortunately this is pretty hairy, especially avoiding endian issues.
|
|
//
|
|
// The cJU_JPLEAF* cases are very similar to same-index-size cJU_JPIMMED* cases
|
|
// for *_02 and above, but must return differently, at least for JudyL, so
|
|
// spell them out separately here at the cost of a little redundant code for
|
|
// Judy1.
|
|
|
|
switch (JU_JPTYPE(Pjp))
|
|
{
|
|
#if (defined(JUDYL) || (! defined(JU_64BIT)))
|
|
case cJU_JPLEAF1:
|
|
|
|
JU_SETDIGIT1(*PIndex, ((uint8_t *) Pjll)[offset]);
|
|
JU_RET_FOUND_LEAF1(Pjll, pop1, offset);
|
|
#endif
|
|
|
|
case cJU_JPLEAF2:
|
|
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(2)))
|
|
| ((uint16_t *) Pjll)[offset];
|
|
JU_RET_FOUND_LEAF2(Pjll, pop1, offset);
|
|
|
|
case cJU_JPLEAF3:
|
|
{
|
|
Word_t lsb;
|
|
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (3 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
|
|
JU_RET_FOUND_LEAF3(Pjll, pop1, offset);
|
|
}
|
|
|
|
#ifdef JU_64BIT
|
|
case cJU_JPLEAF4:
|
|
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(4)))
|
|
| ((uint32_t *) Pjll)[offset];
|
|
JU_RET_FOUND_LEAF4(Pjll, pop1, offset);
|
|
|
|
case cJU_JPLEAF5:
|
|
{
|
|
Word_t lsb;
|
|
JU_COPY5_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (5 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(5))) | lsb;
|
|
JU_RET_FOUND_LEAF5(Pjll, pop1, offset);
|
|
}
|
|
|
|
case cJU_JPLEAF6:
|
|
{
|
|
Word_t lsb;
|
|
JU_COPY6_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (6 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(6))) | lsb;
|
|
JU_RET_FOUND_LEAF6(Pjll, pop1, offset);
|
|
}
|
|
|
|
case cJU_JPLEAF7:
|
|
{
|
|
Word_t lsb;
|
|
JU_COPY7_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (7 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(7))) | lsb;
|
|
JU_RET_FOUND_LEAF7(Pjll, pop1, offset);
|
|
}
|
|
|
|
#endif // JU_64BIT
|
|
|
|
#define SET_01(cState) JU_SETDIGITS(*PIndex, JU_JPDCDPOP0(Pjp), cState)
|
|
|
|
case cJU_JPIMMED_1_01: SET_01(1); goto SM1Imm_01;
|
|
case cJU_JPIMMED_2_01: SET_01(2); goto SM1Imm_01;
|
|
case cJU_JPIMMED_3_01: SET_01(3); goto SM1Imm_01;
|
|
#ifdef JU_64BIT
|
|
case cJU_JPIMMED_4_01: SET_01(4); goto SM1Imm_01;
|
|
case cJU_JPIMMED_5_01: SET_01(5); goto SM1Imm_01;
|
|
case cJU_JPIMMED_6_01: SET_01(6); goto SM1Imm_01;
|
|
case cJU_JPIMMED_7_01: SET_01(7); goto SM1Imm_01;
|
|
#endif
|
|
SM1Imm_01: JU_RET_FOUND_IMM_01(Pjp);
|
|
|
|
// Shorthand for where to find start of Index bytes array:
|
|
|
|
#ifdef JUDY1
|
|
#define PJI (Pjp->jp_1Index)
|
|
#else
|
|
#define PJI (Pjp->jp_LIndex)
|
|
#endif
|
|
|
|
case cJU_JPIMMED_1_02:
|
|
case cJU_JPIMMED_1_03:
|
|
#if (defined(JUDY1) || defined(JU_64BIT))
|
|
case cJU_JPIMMED_1_04:
|
|
case cJU_JPIMMED_1_05:
|
|
case cJU_JPIMMED_1_06:
|
|
case cJU_JPIMMED_1_07:
|
|
#endif
|
|
#if (defined(JUDY1) && defined(JU_64BIT))
|
|
case cJ1_JPIMMED_1_08:
|
|
case cJ1_JPIMMED_1_09:
|
|
case cJ1_JPIMMED_1_10:
|
|
case cJ1_JPIMMED_1_11:
|
|
case cJ1_JPIMMED_1_12:
|
|
case cJ1_JPIMMED_1_13:
|
|
case cJ1_JPIMMED_1_14:
|
|
case cJ1_JPIMMED_1_15:
|
|
#endif
|
|
JU_SETDIGIT1(*PIndex, ((uint8_t *) PJI)[offset]);
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
|
|
#if (defined(JUDY1) || defined(JU_64BIT))
|
|
case cJU_JPIMMED_2_02:
|
|
case cJU_JPIMMED_2_03:
|
|
#endif
|
|
#if (defined(JUDY1) && defined(JU_64BIT))
|
|
case cJ1_JPIMMED_2_04:
|
|
case cJ1_JPIMMED_2_05:
|
|
case cJ1_JPIMMED_2_06:
|
|
case cJ1_JPIMMED_2_07:
|
|
#endif
|
|
#if (defined(JUDY1) || defined(JU_64BIT))
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(2)))
|
|
| ((uint16_t *) PJI)[offset];
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
#endif
|
|
|
|
#if (defined(JUDY1) || defined(JU_64BIT))
|
|
case cJU_JPIMMED_3_02:
|
|
#endif
|
|
#if (defined(JUDY1) && defined(JU_64BIT))
|
|
case cJ1_JPIMMED_3_03:
|
|
case cJ1_JPIMMED_3_04:
|
|
case cJ1_JPIMMED_3_05:
|
|
#endif
|
|
#if (defined(JUDY1) || defined(JU_64BIT))
|
|
{
|
|
Word_t lsb;
|
|
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (3 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
}
|
|
#endif
|
|
|
|
#if (defined(JUDY1) && defined(JU_64BIT))
|
|
case cJ1_JPIMMED_4_02:
|
|
case cJ1_JPIMMED_4_03:
|
|
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(4)))
|
|
| ((uint32_t *) PJI)[offset];
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
|
|
case cJ1_JPIMMED_5_02:
|
|
case cJ1_JPIMMED_5_03:
|
|
{
|
|
Word_t lsb;
|
|
JU_COPY5_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (5 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(5))) | lsb;
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
}
|
|
|
|
case cJ1_JPIMMED_6_02:
|
|
{
|
|
Word_t lsb;
|
|
JU_COPY6_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (6 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(6))) | lsb;
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
}
|
|
|
|
case cJ1_JPIMMED_7_02:
|
|
{
|
|
Word_t lsb;
|
|
JU_COPY7_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (7 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(7))) | lsb;
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
}
|
|
|
|
#endif // (JUDY1 && JU_64BIT)
|
|
|
|
} // switch for not-found *PIndex
|
|
|
|
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT); // impossible?
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// BITMAP LEAF:
|
|
//
|
|
// Check Decode bytes, if any, in the current JP, then look in the leaf for
|
|
// *PIndex.
|
|
|
|
case cJU_JPLEAF_B1:
|
|
{
|
|
Pjlb_t Pjlb;
|
|
CHECKDCD(1);
|
|
|
|
Pjlb = P_JLB(Pjp->jp_Addr);
|
|
digit = JU_DIGITATSTATE(*PIndex, 1);
|
|
subexp = JU_SUBEXPL(digit);
|
|
bitposmask = JU_BITPOSMASKL(digit);
|
|
assert(subexp < cJU_NUMSUBEXPL); // falls in expected range.
|
|
|
|
// *PIndex exists in LeafB1:
|
|
|
|
// if (JU_BITMAPTESTL(Pjlb, digit)) // slower.
|
|
if (JU_JLB_BITMAP(Pjlb, subexp) & bitposmask) // faster.
|
|
{
|
|
#ifdef JUDYL // needs offset at this point:
|
|
offset = SEARCHBITMAPL(JU_JLB_BITMAP(Pjlb, subexp), digit, bitposmask);
|
|
#endif
|
|
JU_RET_FOUND_LEAF_B1(Pjlb, subexp, offset);
|
|
// == return((PPvoid_t) (P_JV(JL_JLB_PVALUE(Pjlb, subexp)) + (offset)));
|
|
}
|
|
|
|
// Dead end, no Index in LeafB1 for remaining digit in *PIndex:
|
|
//
|
|
// If theres a next-left/right Index in the current LeafB1, which for
|
|
// Judy*Next() is true if any bits are set for higher Indexes, shortcut by
|
|
// returning it. Note: For Judy*Prev(), offset is set here to the correct
|
|
// value for the next-left JP.
|
|
|
|
offset = SEARCHBITMAPL(JU_JLB_BITMAP(Pjlb, subexp), digit,
|
|
bitposmask);
|
|
// right range:
|
|
assert((offset >= -1) && (offset < (int) cJU_BITSPERSUBEXPL));
|
|
|
|
#ifdef JUDYPREV
|
|
if (offset >= 0) // next-left JP is in this subexpanse.
|
|
goto SM1LeafB1Findlimit;
|
|
|
|
while (--subexp >= 0) // search next-left subexpanses.
|
|
#else
|
|
if (JU_JLB_BITMAP(Pjlb, subexp) & JU_MASKHIGHEREXC(bitposmask))
|
|
{
|
|
++offset; // next-left => next-right.
|
|
goto SM1LeafB1Findlimit;
|
|
}
|
|
|
|
while (++subexp < cJU_NUMSUBEXPL) // search next-right subexps.
|
|
#endif
|
|
{
|
|
if (! JU_JLB_BITMAP(Pjlb, subexp)) continue; // empty subexp.
|
|
|
|
#ifdef JUDYPREV
|
|
offset = SEARCHBITMAPMAXL(JU_JLB_BITMAP(Pjlb, subexp));
|
|
// expected range:
|
|
assert((offset >= 0) && (offset < (int) cJU_BITSPERSUBEXPL));
|
|
#else
|
|
offset = 0;
|
|
#endif
|
|
|
|
// Save the next-left/right Indexess digit in *PIndex:
|
|
|
|
SM1LeafB1Findlimit:
|
|
JU_BITMAPDIGITL(digit, subexp, JU_JLB_BITMAP(Pjlb, subexp), offset);
|
|
JU_SETDIGIT1(*PIndex, digit);
|
|
JU_RET_FOUND_LEAF_B1(Pjlb, subexp, offset);
|
|
// == return((PPvoid_t) (P_JV(JL_JLB_PVALUE(Pjlb, subexp)) + (offset)));
|
|
}
|
|
|
|
// Theres no next-left/right Index in the LeafB1:
|
|
//
|
|
// Shortcut and start backtracking one level up; ignore the current Pjp because
|
|
// it points to a LeafB1 with no next-left/right Index.
|
|
|
|
goto SM2Backtrack;
|
|
|
|
} // case cJU_JPLEAF_B1
|
|
|
|
#ifdef JUDY1
|
|
// ----------------------------------------------------------------------------
|
|
// FULL POPULATION:
|
|
//
|
|
// If the Decode bytes match, *PIndex is found (without modification).
|
|
|
|
case cJ1_JPFULLPOPU1:
|
|
|
|
CHECKDCD(1);
|
|
JU_RET_FOUND_FULLPOPU1;
|
|
#endif
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// IMMEDIATE:
|
|
|
|
#ifdef JUDYPREV
|
|
#define SM1IMM_SETPOP1(cPop1)
|
|
#else
|
|
#define SM1IMM_SETPOP1(cPop1) pop1 = (cPop1)
|
|
#endif
|
|
|
|
#define SM1IMM(Func,cPop1) \
|
|
SM1IMM_SETPOP1(cPop1); \
|
|
offset = Func((Pjll_t) (PJI), cPop1, *PIndex); \
|
|
goto SM1LeafLImm
|
|
|
|
// Special case for Pop1 = 1 Immediate JPs:
|
|
//
|
|
// If *PIndex is in the immediate, offset is 0, otherwise the binary NOT of the
|
|
// offset where it belongs, 0 or 1, same as from the search functions.
|
|
|
|
#ifdef JUDYPREV
|
|
#define SM1IMM_01_SETPOP1
|
|
#else
|
|
#define SM1IMM_01_SETPOP1 pop1 = 1
|
|
#endif
|
|
|
|
#define SM1IMM_01 \
|
|
SM1IMM_01_SETPOP1; \
|
|
offset = ((JU_JPDCDPOP0(Pjp) < JU_TRIMTODCDSIZE(*PIndex)) ? ~1 : \
|
|
(JU_JPDCDPOP0(Pjp) == JU_TRIMTODCDSIZE(*PIndex)) ? 0 : \
|
|
~0); \
|
|
goto SM1LeafLImm
|
|
|
|
case cJU_JPIMMED_1_01:
|
|
case cJU_JPIMMED_2_01:
|
|
case cJU_JPIMMED_3_01:
|
|
#ifdef JU_64BIT
|
|
case cJU_JPIMMED_4_01:
|
|
case cJU_JPIMMED_5_01:
|
|
case cJU_JPIMMED_6_01:
|
|
case cJU_JPIMMED_7_01:
|
|
#endif
|
|
SM1IMM_01;
|
|
|
|
// TBD: Doug says it would be OK to have fewer calls and calculate arg 2, here
|
|
// and in Judy*Count() also.
|
|
|
|
case cJU_JPIMMED_1_02: SM1IMM(j__udySearchLeaf1, 2);
|
|
case cJU_JPIMMED_1_03: SM1IMM(j__udySearchLeaf1, 3);
|
|
#if (defined(JUDY1) || defined(JU_64BIT))
|
|
case cJU_JPIMMED_1_04: SM1IMM(j__udySearchLeaf1, 4);
|
|
case cJU_JPIMMED_1_05: SM1IMM(j__udySearchLeaf1, 5);
|
|
case cJU_JPIMMED_1_06: SM1IMM(j__udySearchLeaf1, 6);
|
|
case cJU_JPIMMED_1_07: SM1IMM(j__udySearchLeaf1, 7);
|
|
#endif
|
|
#if (defined(JUDY1) && defined(JU_64BIT))
|
|
case cJ1_JPIMMED_1_08: SM1IMM(j__udySearchLeaf1, 8);
|
|
case cJ1_JPIMMED_1_09: SM1IMM(j__udySearchLeaf1, 9);
|
|
case cJ1_JPIMMED_1_10: SM1IMM(j__udySearchLeaf1, 10);
|
|
case cJ1_JPIMMED_1_11: SM1IMM(j__udySearchLeaf1, 11);
|
|
case cJ1_JPIMMED_1_12: SM1IMM(j__udySearchLeaf1, 12);
|
|
case cJ1_JPIMMED_1_13: SM1IMM(j__udySearchLeaf1, 13);
|
|
case cJ1_JPIMMED_1_14: SM1IMM(j__udySearchLeaf1, 14);
|
|
case cJ1_JPIMMED_1_15: SM1IMM(j__udySearchLeaf1, 15);
|
|
#endif
|
|
|
|
#if (defined(JUDY1) || defined(JU_64BIT))
|
|
case cJU_JPIMMED_2_02: SM1IMM(j__udySearchLeaf2, 2);
|
|
case cJU_JPIMMED_2_03: SM1IMM(j__udySearchLeaf2, 3);
|
|
#endif
|
|
#if (defined(JUDY1) && defined(JU_64BIT))
|
|
case cJ1_JPIMMED_2_04: SM1IMM(j__udySearchLeaf2, 4);
|
|
case cJ1_JPIMMED_2_05: SM1IMM(j__udySearchLeaf2, 5);
|
|
case cJ1_JPIMMED_2_06: SM1IMM(j__udySearchLeaf2, 6);
|
|
case cJ1_JPIMMED_2_07: SM1IMM(j__udySearchLeaf2, 7);
|
|
#endif
|
|
|
|
#if (defined(JUDY1) || defined(JU_64BIT))
|
|
case cJU_JPIMMED_3_02: SM1IMM(j__udySearchLeaf3, 2);
|
|
#endif
|
|
#if (defined(JUDY1) && defined(JU_64BIT))
|
|
case cJ1_JPIMMED_3_03: SM1IMM(j__udySearchLeaf3, 3);
|
|
case cJ1_JPIMMED_3_04: SM1IMM(j__udySearchLeaf3, 4);
|
|
case cJ1_JPIMMED_3_05: SM1IMM(j__udySearchLeaf3, 5);
|
|
|
|
case cJ1_JPIMMED_4_02: SM1IMM(j__udySearchLeaf4, 2);
|
|
case cJ1_JPIMMED_4_03: SM1IMM(j__udySearchLeaf4, 3);
|
|
|
|
case cJ1_JPIMMED_5_02: SM1IMM(j__udySearchLeaf5, 2);
|
|
case cJ1_JPIMMED_5_03: SM1IMM(j__udySearchLeaf5, 3);
|
|
|
|
case cJ1_JPIMMED_6_02: SM1IMM(j__udySearchLeaf6, 2);
|
|
|
|
case cJ1_JPIMMED_7_02: SM1IMM(j__udySearchLeaf7, 2);
|
|
#endif
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// INVALID JP TYPE:
|
|
|
|
default: JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
|
|
} // SM1Get switch.
|
|
|
|
/*NOTREACHED*/
|
|
|
|
|
|
// ============================================================================
|
|
// STATE MACHINE 2 -- BACKTRACK BRANCH TO PREVIOUS JP:
|
|
//
|
|
// Look for the next-left/right JP in a branch, backing up the history list as
|
|
// necessary. Upon finding a next-left/right JP, modify the corresponding
|
|
// digit in *PIndex before passing control to SM3Findlimit.
|
|
//
|
|
// Note: As described earlier, only branch JPs are expected here; other types
|
|
// fall into the default case.
|
|
//
|
|
// Note: If a found JP contains needed Dcd bytes, thats OK, theyre copied to
|
|
// *PIndex in SM3Findlimit.
|
|
//
|
|
// TBD: This code has a lot in common with similar code in the shortcut cases
|
|
// in SM1Get. Can combine this code somehow?
|
|
//
|
|
// ENTRY: List, possibly empty, of JPs and offsets in APjphist[] and
|
|
// Aoffhist[]; see earlier comments.
|
|
//
|
|
// EXIT: Execute JU_RET_NOTFOUND if no previous/next JP; otherwise jump to
|
|
// SM3Findlimit to resume a new but different downward search.
|
|
|
|
SM2Backtrack: // come or return here for first/next sideways search.
|
|
|
|
HISTPOP(Pjp, offset);
|
|
|
|
switch (JU_JPTYPE(Pjp))
|
|
{
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// LINEAR BRANCH:
|
|
|
|
case cJU_JPBRANCH_L2: state = 2; goto SM2BranchL;
|
|
case cJU_JPBRANCH_L3: state = 3; goto SM2BranchL;
|
|
#ifdef JU_64BIT
|
|
case cJU_JPBRANCH_L4: state = 4; goto SM2BranchL;
|
|
case cJU_JPBRANCH_L5: state = 5; goto SM2BranchL;
|
|
case cJU_JPBRANCH_L6: state = 6; goto SM2BranchL;
|
|
case cJU_JPBRANCH_L7: state = 7; goto SM2BranchL;
|
|
#endif
|
|
case cJU_JPBRANCH_L: state = cJU_ROOTSTATE; goto SM2BranchL;
|
|
|
|
SM2BranchL:
|
|
#ifdef JUDYPREV
|
|
if (--offset < 0) goto SM2Backtrack; // no next-left JP in BranchL.
|
|
#endif
|
|
Pjbl = P_JBL(Pjp->jp_Addr);
|
|
#ifdef JUDYNEXT
|
|
if (++offset >= (Pjbl->jbl_NumJPs)) goto SM2Backtrack;
|
|
// no next-right JP in BranchL.
|
|
#endif
|
|
|
|
// Theres a next-left/right JP in the current BranchL; save its digit in
|
|
// *PIndex and continue with SM3Findlimit:
|
|
|
|
JU_SETDIGIT(*PIndex, Pjbl->jbl_Expanse[offset], state);
|
|
Pjp = (Pjbl->jbl_jp) + offset;
|
|
goto SM3Findlimit;
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// BITMAP BRANCH:
|
|
|
|
case cJU_JPBRANCH_B2: state = 2; goto SM2BranchB;
|
|
case cJU_JPBRANCH_B3: state = 3; goto SM2BranchB;
|
|
#ifdef JU_64BIT
|
|
case cJU_JPBRANCH_B4: state = 4; goto SM2BranchB;
|
|
case cJU_JPBRANCH_B5: state = 5; goto SM2BranchB;
|
|
case cJU_JPBRANCH_B6: state = 6; goto SM2BranchB;
|
|
case cJU_JPBRANCH_B7: state = 7; goto SM2BranchB;
|
|
#endif
|
|
case cJU_JPBRANCH_B: state = cJU_ROOTSTATE; goto SM2BranchB;
|
|
|
|
SM2BranchB:
|
|
Pjbb = P_JBB(Pjp->jp_Addr);
|
|
HISTPOPBOFF(subexp, offset, digit); // unpack values.
|
|
|
|
// If theres a next-left/right JP in the current BranchB, which for
|
|
// Judy*Next() is true if any bits are set for higher Indexes, continue to
|
|
// SM3Findlimit:
|
|
//
|
|
// Note: offset is set to the JP previously traversed; go one to the
|
|
// left/right.
|
|
|
|
#ifdef JUDYPREV
|
|
if (offset > 0) // next-left JP is in this subexpanse.
|
|
{
|
|
--offset;
|
|
goto SM2BranchBFindlimit;
|
|
}
|
|
|
|
while (--subexp >= 0) // search next-left subexpanses.
|
|
#else
|
|
if (JU_JBB_BITMAP(Pjbb, subexp)
|
|
& JU_MASKHIGHEREXC(JU_BITPOSMASKB(digit)))
|
|
{
|
|
++offset; // next-left => next-right.
|
|
goto SM2BranchBFindlimit;
|
|
}
|
|
|
|
while (++subexp < cJU_NUMSUBEXPB) // search next-right subexps.
|
|
#endif
|
|
{
|
|
if (! JU_JBB_PJP(Pjbb, subexp)) continue; // empty subexpanse.
|
|
|
|
#ifdef JUDYPREV
|
|
offset = SEARCHBITMAPMAXB(JU_JBB_BITMAP(Pjbb, subexp));
|
|
// expected range:
|
|
assert((offset >= 0) && (offset < cJU_BITSPERSUBEXPB));
|
|
#else
|
|
offset = 0;
|
|
#endif
|
|
|
|
// Save the next-left/right JPs digit in *PIndex:
|
|
|
|
SM2BranchBFindlimit:
|
|
JU_BITMAPDIGITB(digit, subexp, JU_JBB_BITMAP(Pjbb, subexp),
|
|
offset);
|
|
JU_SETDIGIT(*PIndex, digit, state);
|
|
|
|
if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp))) == (Pjp_t) NULL)
|
|
{
|
|
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
}
|
|
|
|
Pjp += offset;
|
|
goto SM3Findlimit;
|
|
}
|
|
|
|
// Theres no next-left/right JP in the BranchB:
|
|
|
|
goto SM2Backtrack;
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// UNCOMPRESSED BRANCH:
|
|
|
|
case cJU_JPBRANCH_U2: state = 2; goto SM2BranchU;
|
|
case cJU_JPBRANCH_U3: state = 3; goto SM2BranchU;
|
|
#ifdef JU_64BIT
|
|
case cJU_JPBRANCH_U4: state = 4; goto SM2BranchU;
|
|
case cJU_JPBRANCH_U5: state = 5; goto SM2BranchU;
|
|
case cJU_JPBRANCH_U6: state = 6; goto SM2BranchU;
|
|
case cJU_JPBRANCH_U7: state = 7; goto SM2BranchU;
|
|
#endif
|
|
case cJU_JPBRANCH_U: state = cJU_ROOTSTATE; goto SM2BranchU;
|
|
|
|
SM2BranchU:
|
|
|
|
// Search for a next-left/right JP in the current BranchU, and if one is found,
|
|
// save its digit in *PIndex and continue to SM3Findlimit:
|
|
|
|
Pjbu = P_JBU(Pjp->jp_Addr);
|
|
digit = offset;
|
|
|
|
#ifdef JUDYPREV
|
|
while (digit >= 1)
|
|
{
|
|
Pjp = (Pjbu->jbu_jp) + (--digit);
|
|
#else
|
|
while (digit < cJU_BRANCHUNUMJPS - 1)
|
|
{
|
|
Pjp = (Pjbu->jbu_jp) + (++digit);
|
|
#endif
|
|
if (JPNULL(JU_JPTYPE(Pjp))) continue;
|
|
|
|
JU_SETDIGIT(*PIndex, digit, state);
|
|
goto SM3Findlimit;
|
|
}
|
|
|
|
// Theres no next-left/right JP in the BranchU:
|
|
|
|
goto SM2Backtrack;
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// INVALID JP TYPE:
|
|
|
|
default: JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
|
|
} // SM2Backtrack switch.
|
|
|
|
/*NOTREACHED*/
|
|
|
|
|
|
// ============================================================================
|
|
// STATE MACHINE 3 -- FIND LIMIT JP/INDEX:
|
|
//
|
|
// Look for the highest/lowest (right/left-most) JP in each branch and the
|
|
// highest/lowest Index in a leaf or immediate, and return it. While
|
|
// traversing, modify appropriate digit(s) in *PIndex to reflect the path
|
|
// taken, including Dcd bytes in each JP (which could hold critical missing
|
|
// digits for skipped branches).
|
|
//
|
|
// ENTRY: Pjp set to a JP under which to find max/min JPs (if a branch JP) or
|
|
// a max/min Index and return (if a leaf or immediate JP).
|
|
//
|
|
// EXIT: Execute JU_RET_FOUND* upon reaching a leaf or immediate. Should be
|
|
// impossible to fail, unless the Judy array is corrupt.
|
|
|
|
SM3Findlimit: // come or return here for first/next branch/leaf.
|
|
|
|
switch (JU_JPTYPE(Pjp))
|
|
{
|
|
// ----------------------------------------------------------------------------
|
|
// LINEAR BRANCH:
|
|
//
|
|
// Simply use the highest/lowest (right/left-most) JP in the BranchL, but first
|
|
// copy the Dcd bytes to *PIndex if there are any (only if state <
|
|
// cJU_ROOTSTATE - 1).
|
|
|
|
case cJU_JPBRANCH_L2: SM3PREPB_DCD(2, SM3BranchL);
|
|
#ifndef JU_64BIT
|
|
case cJU_JPBRANCH_L3: SM3PREPB( 3, SM3BranchL);
|
|
#else
|
|
case cJU_JPBRANCH_L3: SM3PREPB_DCD(3, SM3BranchL);
|
|
case cJU_JPBRANCH_L4: SM3PREPB_DCD(4, SM3BranchL);
|
|
case cJU_JPBRANCH_L5: SM3PREPB_DCD(5, SM3BranchL);
|
|
case cJU_JPBRANCH_L6: SM3PREPB_DCD(6, SM3BranchL);
|
|
case cJU_JPBRANCH_L7: SM3PREPB( 7, SM3BranchL);
|
|
#endif
|
|
case cJU_JPBRANCH_L: SM3PREPB( cJU_ROOTSTATE, SM3BranchL);
|
|
|
|
SM3BranchL:
|
|
Pjbl = P_JBL(Pjp->jp_Addr);
|
|
|
|
#ifdef JUDYPREV
|
|
if ((offset = (Pjbl->jbl_NumJPs) - 1) < 0)
|
|
#else
|
|
offset = 0; if ((Pjbl->jbl_NumJPs) == 0)
|
|
#endif
|
|
{
|
|
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
}
|
|
|
|
JU_SETDIGIT(*PIndex, Pjbl->jbl_Expanse[offset], state);
|
|
Pjp = (Pjbl->jbl_jp) + offset;
|
|
goto SM3Findlimit;
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// BITMAP BRANCH:
|
|
//
|
|
// Look for the highest/lowest (right/left-most) non-null subexpanse, then use
|
|
// the highest/lowest JP in that subexpanse, but first copy Dcd bytes, if there
|
|
// are any (only if state < cJU_ROOTSTATE - 1), to *PIndex.
|
|
|
|
case cJU_JPBRANCH_B2: SM3PREPB_DCD(2, SM3BranchB);
|
|
#ifndef JU_64BIT
|
|
case cJU_JPBRANCH_B3: SM3PREPB( 3, SM3BranchB);
|
|
#else
|
|
case cJU_JPBRANCH_B3: SM3PREPB_DCD(3, SM3BranchB);
|
|
case cJU_JPBRANCH_B4: SM3PREPB_DCD(4, SM3BranchB);
|
|
case cJU_JPBRANCH_B5: SM3PREPB_DCD(5, SM3BranchB);
|
|
case cJU_JPBRANCH_B6: SM3PREPB_DCD(6, SM3BranchB);
|
|
case cJU_JPBRANCH_B7: SM3PREPB( 7, SM3BranchB);
|
|
#endif
|
|
case cJU_JPBRANCH_B: SM3PREPB( cJU_ROOTSTATE, SM3BranchB);
|
|
|
|
SM3BranchB:
|
|
Pjbb = P_JBB(Pjp->jp_Addr);
|
|
#ifdef JUDYPREV
|
|
subexp = cJU_NUMSUBEXPB;
|
|
|
|
while (! (JU_JBB_BITMAP(Pjbb, --subexp))) // find non-empty subexp.
|
|
{
|
|
if (subexp <= 0) // wholly empty bitmap.
|
|
{
|
|
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
}
|
|
}
|
|
|
|
offset = SEARCHBITMAPMAXB(JU_JBB_BITMAP(Pjbb, subexp));
|
|
// expected range:
|
|
assert((offset >= 0) && (offset < cJU_BITSPERSUBEXPB));
|
|
#else
|
|
subexp = -1;
|
|
|
|
while (! (JU_JBB_BITMAP(Pjbb, ++subexp))) // find non-empty subexp.
|
|
{
|
|
if (subexp >= cJU_NUMSUBEXPB - 1) // didnt find one.
|
|
{
|
|
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
}
|
|
}
|
|
|
|
offset = 0;
|
|
#endif
|
|
|
|
JU_BITMAPDIGITB(digit, subexp, JU_JBB_BITMAP(Pjbb, subexp), offset);
|
|
JU_SETDIGIT(*PIndex, digit, state);
|
|
|
|
if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp))) == (Pjp_t) NULL)
|
|
{
|
|
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
}
|
|
|
|
Pjp += offset;
|
|
goto SM3Findlimit;
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// UNCOMPRESSED BRANCH:
|
|
//
|
|
// Look for the highest/lowest (right/left-most) non-null JP, and use it, but
|
|
// first copy Dcd bytes to *PIndex if there are any (only if state <
|
|
// cJU_ROOTSTATE - 1).
|
|
|
|
case cJU_JPBRANCH_U2: SM3PREPB_DCD(2, SM3BranchU);
|
|
#ifndef JU_64BIT
|
|
case cJU_JPBRANCH_U3: SM3PREPB( 3, SM3BranchU);
|
|
#else
|
|
case cJU_JPBRANCH_U3: SM3PREPB_DCD(3, SM3BranchU);
|
|
case cJU_JPBRANCH_U4: SM3PREPB_DCD(4, SM3BranchU);
|
|
case cJU_JPBRANCH_U5: SM3PREPB_DCD(5, SM3BranchU);
|
|
case cJU_JPBRANCH_U6: SM3PREPB_DCD(6, SM3BranchU);
|
|
case cJU_JPBRANCH_U7: SM3PREPB( 7, SM3BranchU);
|
|
#endif
|
|
case cJU_JPBRANCH_U: SM3PREPB( cJU_ROOTSTATE, SM3BranchU);
|
|
|
|
SM3BranchU:
|
|
Pjbu = P_JBU(Pjp->jp_Addr);
|
|
#ifdef JUDYPREV
|
|
digit = cJU_BRANCHUNUMJPS;
|
|
|
|
while (digit >= 1)
|
|
{
|
|
Pjp = (Pjbu->jbu_jp) + (--digit);
|
|
#else
|
|
|
|
for (digit = 0; digit < cJU_BRANCHUNUMJPS; ++digit)
|
|
{
|
|
Pjp = (Pjbu->jbu_jp) + digit;
|
|
#endif
|
|
if (JPNULL(JU_JPTYPE(Pjp))) continue;
|
|
|
|
JU_SETDIGIT(*PIndex, digit, state);
|
|
goto SM3Findlimit;
|
|
}
|
|
|
|
// No non-null JPs in BranchU:
|
|
|
|
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// LINEAR LEAF:
|
|
//
|
|
// Simply use the highest/lowest (right/left-most) Index in the LeafL, but the
|
|
// details vary depending on leaf Index Size. First copy Dcd bytes, if there
|
|
// are any (only if state < cJU_ROOTSTATE - 1), to *PIndex.
|
|
|
|
#define SM3LEAFLDCD(cState) \
|
|
JU_SETDCD(*PIndex, Pjp, cState); \
|
|
SM3LEAFLNODCD
|
|
|
|
#ifdef JUDY1
|
|
#define SM3LEAFL_SETPOP1 // not needed in any cases.
|
|
#else
|
|
#define SM3LEAFL_SETPOP1 pop1 = JU_JPLEAF_POP0(Pjp) + 1
|
|
#endif
|
|
|
|
#ifdef JUDYPREV
|
|
#define SM3LEAFLNODCD \
|
|
Pjll = P_JLL(Pjp->jp_Addr); \
|
|
SM3LEAFL_SETPOP1; \
|
|
offset = JU_JPLEAF_POP0(Pjp); assert(offset >= 0)
|
|
#else
|
|
#define SM3LEAFLNODCD \
|
|
Pjll = P_JLL(Pjp->jp_Addr); \
|
|
SM3LEAFL_SETPOP1; \
|
|
offset = 0; assert(JU_JPLEAF_POP0(Pjp) >= 0);
|
|
#endif
|
|
|
|
#if (defined(JUDYL) || (! defined(JU_64BIT)))
|
|
case cJU_JPLEAF1:
|
|
|
|
SM3LEAFLDCD(1);
|
|
JU_SETDIGIT1(*PIndex, ((uint8_t *) Pjll)[offset]);
|
|
JU_RET_FOUND_LEAF1(Pjll, pop1, offset);
|
|
#endif
|
|
|
|
case cJU_JPLEAF2:
|
|
|
|
SM3LEAFLDCD(2);
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(2)))
|
|
| ((uint16_t *) Pjll)[offset];
|
|
JU_RET_FOUND_LEAF2(Pjll, pop1, offset);
|
|
|
|
#ifndef JU_64BIT
|
|
case cJU_JPLEAF3:
|
|
{
|
|
Word_t lsb;
|
|
SM3LEAFLNODCD;
|
|
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (3 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
|
|
JU_RET_FOUND_LEAF3(Pjll, pop1, offset);
|
|
}
|
|
|
|
#else
|
|
case cJU_JPLEAF3:
|
|
{
|
|
Word_t lsb;
|
|
SM3LEAFLDCD(3);
|
|
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (3 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
|
|
JU_RET_FOUND_LEAF3(Pjll, pop1, offset);
|
|
}
|
|
|
|
case cJU_JPLEAF4:
|
|
|
|
SM3LEAFLDCD(4);
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(4)))
|
|
| ((uint32_t *) Pjll)[offset];
|
|
JU_RET_FOUND_LEAF4(Pjll, pop1, offset);
|
|
|
|
case cJU_JPLEAF5:
|
|
{
|
|
Word_t lsb;
|
|
SM3LEAFLDCD(5);
|
|
JU_COPY5_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (5 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(5))) | lsb;
|
|
JU_RET_FOUND_LEAF5(Pjll, pop1, offset);
|
|
}
|
|
|
|
case cJU_JPLEAF6:
|
|
{
|
|
Word_t lsb;
|
|
SM3LEAFLDCD(6);
|
|
JU_COPY6_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (6 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(6))) | lsb;
|
|
JU_RET_FOUND_LEAF6(Pjll, pop1, offset);
|
|
}
|
|
|
|
case cJU_JPLEAF7:
|
|
{
|
|
Word_t lsb;
|
|
SM3LEAFLNODCD;
|
|
JU_COPY7_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (7 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(7))) | lsb;
|
|
JU_RET_FOUND_LEAF7(Pjll, pop1, offset);
|
|
}
|
|
#endif
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// BITMAP LEAF:
|
|
//
|
|
// Look for the highest/lowest (right/left-most) non-null subexpanse, then use
|
|
// the highest/lowest Index in that subexpanse, but first copy Dcd bytes
|
|
// (always present since state 1 < cJU_ROOTSTATE) to *PIndex.
|
|
|
|
case cJU_JPLEAF_B1:
|
|
{
|
|
Pjlb_t Pjlb;
|
|
|
|
JU_SETDCD(*PIndex, Pjp, 1);
|
|
|
|
Pjlb = P_JLB(Pjp->jp_Addr);
|
|
#ifdef JUDYPREV
|
|
subexp = cJU_NUMSUBEXPL;
|
|
|
|
while (! JU_JLB_BITMAP(Pjlb, --subexp)) // find non-empty subexp.
|
|
{
|
|
if (subexp <= 0) // wholly empty bitmap.
|
|
{
|
|
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
}
|
|
}
|
|
|
|
// TBD: Might it be faster to just use a variant of BITMAPDIGIT*() that yields
|
|
// the digit for the right-most Index with a bit set?
|
|
|
|
offset = SEARCHBITMAPMAXL(JU_JLB_BITMAP(Pjlb, subexp));
|
|
// expected range:
|
|
assert((offset >= 0) && (offset < cJU_BITSPERSUBEXPL));
|
|
#else
|
|
subexp = -1;
|
|
|
|
while (! JU_JLB_BITMAP(Pjlb, ++subexp)) // find non-empty subexp.
|
|
{
|
|
if (subexp >= cJU_NUMSUBEXPL - 1) // didnt find one.
|
|
{
|
|
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
}
|
|
}
|
|
|
|
offset = 0;
|
|
#endif
|
|
|
|
JU_BITMAPDIGITL(digit, subexp, JU_JLB_BITMAP(Pjlb, subexp), offset);
|
|
JU_SETDIGIT1(*PIndex, digit);
|
|
JU_RET_FOUND_LEAF_B1(Pjlb, subexp, offset);
|
|
// == return((PPvoid_t) (P_JV(JL_JLB_PVALUE(Pjlb, subexp)) + (offset)));
|
|
|
|
} // case cJU_JPLEAF_B1
|
|
|
|
#ifdef JUDY1
|
|
// ----------------------------------------------------------------------------
|
|
// FULL POPULATION:
|
|
//
|
|
// Copy Dcd bytes to *PIndex (always present since state 1 < cJU_ROOTSTATE),
|
|
// then set the highest/lowest possible digit as the LSB in *PIndex.
|
|
|
|
case cJ1_JPFULLPOPU1:
|
|
|
|
JU_SETDCD( *PIndex, Pjp, 1);
|
|
#ifdef JUDYPREV
|
|
JU_SETDIGIT1(*PIndex, cJU_BITSPERBITMAP - 1);
|
|
#else
|
|
JU_SETDIGIT1(*PIndex, 0);
|
|
#endif
|
|
JU_RET_FOUND_FULLPOPU1;
|
|
#endif // JUDY1
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// IMMEDIATE:
|
|
//
|
|
// Simply use the highest/lowest (right/left-most) Index in the Imm, but the
|
|
// details vary depending on leaf Index Size and pop1. Note: There are no Dcd
|
|
// bytes in an Immediate JP, but in a cJU_JPIMMED_*_01 JP, the field holds the
|
|
// least bytes of the immediate Index.
|
|
|
|
case cJU_JPIMMED_1_01: SET_01(1); goto SM3Imm_01;
|
|
case cJU_JPIMMED_2_01: SET_01(2); goto SM3Imm_01;
|
|
case cJU_JPIMMED_3_01: SET_01(3); goto SM3Imm_01;
|
|
#ifdef JU_64BIT
|
|
case cJU_JPIMMED_4_01: SET_01(4); goto SM3Imm_01;
|
|
case cJU_JPIMMED_5_01: SET_01(5); goto SM3Imm_01;
|
|
case cJU_JPIMMED_6_01: SET_01(6); goto SM3Imm_01;
|
|
case cJU_JPIMMED_7_01: SET_01(7); goto SM3Imm_01;
|
|
#endif
|
|
SM3Imm_01: JU_RET_FOUND_IMM_01(Pjp);
|
|
|
|
#ifdef JUDYPREV
|
|
#define SM3IMM_OFFSET(cPop1) (cPop1) - 1 // highest.
|
|
#else
|
|
#define SM3IMM_OFFSET(cPop1) 0 // lowest.
|
|
#endif
|
|
|
|
#define SM3IMM(cPop1,Next) \
|
|
offset = SM3IMM_OFFSET(cPop1); \
|
|
goto Next
|
|
|
|
case cJU_JPIMMED_1_02: SM3IMM( 2, SM3Imm1);
|
|
case cJU_JPIMMED_1_03: SM3IMM( 3, SM3Imm1);
|
|
#if (defined(JUDY1) || defined(JU_64BIT))
|
|
case cJU_JPIMMED_1_04: SM3IMM( 4, SM3Imm1);
|
|
case cJU_JPIMMED_1_05: SM3IMM( 5, SM3Imm1);
|
|
case cJU_JPIMMED_1_06: SM3IMM( 6, SM3Imm1);
|
|
case cJU_JPIMMED_1_07: SM3IMM( 7, SM3Imm1);
|
|
#endif
|
|
#if (defined(JUDY1) && defined(JU_64BIT))
|
|
case cJ1_JPIMMED_1_08: SM3IMM( 8, SM3Imm1);
|
|
case cJ1_JPIMMED_1_09: SM3IMM( 9, SM3Imm1);
|
|
case cJ1_JPIMMED_1_10: SM3IMM(10, SM3Imm1);
|
|
case cJ1_JPIMMED_1_11: SM3IMM(11, SM3Imm1);
|
|
case cJ1_JPIMMED_1_12: SM3IMM(12, SM3Imm1);
|
|
case cJ1_JPIMMED_1_13: SM3IMM(13, SM3Imm1);
|
|
case cJ1_JPIMMED_1_14: SM3IMM(14, SM3Imm1);
|
|
case cJ1_JPIMMED_1_15: SM3IMM(15, SM3Imm1);
|
|
#endif
|
|
|
|
SM3Imm1: JU_SETDIGIT1(*PIndex, ((uint8_t *) PJI)[offset]);
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
|
|
#if (defined(JUDY1) || defined(JU_64BIT))
|
|
case cJU_JPIMMED_2_02: SM3IMM(2, SM3Imm2);
|
|
case cJU_JPIMMED_2_03: SM3IMM(3, SM3Imm2);
|
|
#endif
|
|
#if (defined(JUDY1) && defined(JU_64BIT))
|
|
case cJ1_JPIMMED_2_04: SM3IMM(4, SM3Imm2);
|
|
case cJ1_JPIMMED_2_05: SM3IMM(5, SM3Imm2);
|
|
case cJ1_JPIMMED_2_06: SM3IMM(6, SM3Imm2);
|
|
case cJ1_JPIMMED_2_07: SM3IMM(7, SM3Imm2);
|
|
#endif
|
|
|
|
#if (defined(JUDY1) || defined(JU_64BIT))
|
|
SM3Imm2: *PIndex = (*PIndex & (~JU_LEASTBYTESMASK(2)))
|
|
| ((uint16_t *) PJI)[offset];
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
#endif
|
|
|
|
#if (defined(JUDY1) || defined(JU_64BIT))
|
|
case cJU_JPIMMED_3_02: SM3IMM(2, SM3Imm3);
|
|
#endif
|
|
#if (defined(JUDY1) && defined(JU_64BIT))
|
|
case cJ1_JPIMMED_3_03: SM3IMM(3, SM3Imm3);
|
|
case cJ1_JPIMMED_3_04: SM3IMM(4, SM3Imm3);
|
|
case cJ1_JPIMMED_3_05: SM3IMM(5, SM3Imm3);
|
|
#endif
|
|
|
|
#if (defined(JUDY1) || defined(JU_64BIT))
|
|
SM3Imm3:
|
|
{
|
|
Word_t lsb;
|
|
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (3 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
}
|
|
#endif
|
|
|
|
#if (defined(JUDY1) && defined(JU_64BIT))
|
|
case cJ1_JPIMMED_4_02: SM3IMM(2, SM3Imm4);
|
|
case cJ1_JPIMMED_4_03: SM3IMM(3, SM3Imm4);
|
|
|
|
SM3Imm4: *PIndex = (*PIndex & (~JU_LEASTBYTESMASK(4)))
|
|
| ((uint32_t *) PJI)[offset];
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
|
|
case cJ1_JPIMMED_5_02: SM3IMM(2, SM3Imm5);
|
|
case cJ1_JPIMMED_5_03: SM3IMM(3, SM3Imm5);
|
|
|
|
SM3Imm5:
|
|
{
|
|
Word_t lsb;
|
|
JU_COPY5_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (5 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(5))) | lsb;
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
}
|
|
|
|
case cJ1_JPIMMED_6_02: SM3IMM(2, SM3Imm6);
|
|
|
|
SM3Imm6:
|
|
{
|
|
Word_t lsb;
|
|
JU_COPY6_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (6 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(6))) | lsb;
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
}
|
|
|
|
case cJ1_JPIMMED_7_02: SM3IMM(2, SM3Imm7);
|
|
|
|
SM3Imm7:
|
|
{
|
|
Word_t lsb;
|
|
JU_COPY7_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (7 * offset));
|
|
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(7))) | lsb;
|
|
JU_RET_FOUND_IMM(Pjp, offset);
|
|
}
|
|
#endif // (JUDY1 && JU_64BIT)
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// OTHER CASES:
|
|
|
|
default: JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
|
|
JUDY1CODE(return(JERRI );)
|
|
JUDYLCODE(return(PPJERR);)
|
|
|
|
} // SM3Findlimit switch.
|
|
|
|
/*NOTREACHED*/
|
|
|
|
} // Judy1Prev() / Judy1Next() / JudyLPrev() / JudyLNext()
|