1891 lines
59 KiB
C

// Copyright (C) 2000 - 2002 Hewlett-Packard Company
//
// This program is free software; you can redistribute it and/or modify it
// under the term of the GNU Lesser General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
// for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// _________________
// @(#) $Revision$ $Source$
//
// Judy*Prev() and Judy*Next() functions for Judy1 and JudyL.
// Compile with one of -DJUDY1 or -DJUDYL.
//
// Compile with -DJUDYNEXT for the Judy*Next() function; otherwise defaults to
// Judy*Prev().
#if (! (defined(JUDY1) || defined(JUDYL)))
#error: One of -DJUDY1 or -DJUDYL must be specified.
#endif
#ifndef JUDYNEXT
#ifndef JUDYPREV
#define JUDYPREV 1 // neither set => use default.
#endif
#endif
#ifdef JUDY1
#include "Judy1.h"
#else
#include "JudyL.h"
#endif
#include "JudyPrivate1L.h"
// ****************************************************************************
// J U D Y 1 P R E V
// J U D Y 1 N E X T
// J U D Y L P R E V
// J U D Y L N E X T
//
// See the manual entry for the API.
//
// OVERVIEW OF Judy*Prev():
//
// Use a reentrant switch statement (state machine, SM1 = "get") to decode the
// callers *PIndex-1, starting with the (PArray), through branches, if
// any, down to an immediate or a leaf. Look for *PIndex-1 in that leaf, and
// if found, return it.
//
// A dead end is either a branch that does not contain a JP for the appropriate
// digit in *PIndex-1, or a leaf that does not contain the undecoded digits of
// *PIndex-1. Upon reaching a dead end, backtrack through the leaf/branches
// that were just traversed, using a list (history) of parent JPs that is built
// while going forward in SM1Get. Start with the current leaf or branch. In a
// backtracked leaf, look for an Index less than *PIndex-1. In each
// backtracked branch, look "sideways" for the next JP, if any, lower than the
// one for the digit (from *PIndex-1) that was previously decoded. While
// backtracking, if a leaf has no previous Index or a branch has no lower JP,
// go to its parent branch in turn. Upon reaching the JRP, return failure, "no
// previous Index". The backtrack process is sufficiently different from
// SM1Get to merit its own separate reentrant switch statement (SM2 =
// "backtrack").
//
// While backtracking, upon finding a lower JP in a branch, there is certain to
// be a "prev" Index under that JP (unless the Judy array is corrupt).
// Traverse forward again, this time taking the last (highest, right-most) JP
// in each branch, and the last (highest) Index upon reaching an immediate or a
// leaf. This traversal is sufficiently different from SM1Get and SM2Backtrack
// to merit its own separate reentrant switch statement (SM3 = "findlimit").
//
// "Decode" bytes in JPs complicate this process a little. In SM1Get, when a
// JP is a narrow pointer, that is, when states are skipped (so the skipped
// digits are stored in jp_DcdPopO), compare the relevant digits to the same
// digits in *PIndex-1. If they are EQUAL, proceed in SM1Get as before. If
// jp_DcdPopOs digits are GREATER, treat the JP as a dead end and proceed in
// SM2Backtrack. If jp_DcdPopOs digits are LESS, treat the JP as if it had
// just been found during a backtrack and proceed directly in SM3Findlimit.
//
// Note that Decode bytes can be ignored in SM3Findlimit; they dont matter.
// Also note that in practice the Decode bytes are routinely compared with
// *PIndex-1 because thats simpler and no slower than first testing for
// narrowness.
//
// Decode bytes also make it unnecessary to construct the Index to return (the
// revised *PIndex) during the search. This step is deferred until finding an
// Index during backtrack or findlimit, before returning it. The first digit
// of *PIndex is derived (saved) based on which JP is used in a JRP branch.
// The remaining digits are obtained from the jp_DcdPopO field in the JP (if
// any) above the immediate or leaf containing the found (prev) Index, plus the
// remaining digit(s) in the immediate or leaf itself. In the case of a LEAFW,
// the Index to return is found directly in the leaf.
//
// Note: Theoretically, as described above, upon reaching a dead end, SM1Get
// passes control to SM2Backtrack to look sideways, even in a leaf. Actually
// its a little more efficient for the SM1Get leaf cases to shortcut this and
// take care of the sideways searches themselves. Hence the history list only
// contains branch JPs, and SM2Backtrack only handles branches. In fact, even
// the branch handling cases in SM1Get do some shortcutting (sideways
// searching) to avoid pushing history and calling SM2Backtrack unnecessarily.
//
// Upon reaching an Index to return after backtracking, *PIndex must be
// modified to the found Index. In principle this could be done by building
// the Index from a saved rootdigit (in the top branch) plus the Dcd bytes from
// the parent JP plus the appropriate Index bytes from the leaf. However,
// Immediates are difficult because their parent JPs lack one (last) digit. So
// instead just build the *PIndex to return "top down" while backtracking and
// findlimiting.
//
// This function is written iteratively for speed, rather than recursively.
//
// CAVEATS:
//
// Why use a backtrack list (history stack), since it has finite size? The
// size is small for Judy on both 32-bit and 64-bit systems, and a list (really
// just an array) is fast to maintain and use. Other alternatives include
// doing a lookahead (lookaside) in each branch while traversing forward
// (decoding), and restarting from the top upon a dead end.
//
// A lookahead means noting the last branch traversed which contained a
// non-null JP lower than the one specified by a digit in *PIndex-1, and
// returning to that point for SM3Findlimit. This seems like a good idea, and
// should be pretty cheap for linear and bitmap branches, but it could result
// in up to 31 unnecessary additional cache line fills (in extreme cases) for
// every uncompressed branch traversed. We have considered means of attaching
// to or hiding within an uncompressed branch (in null JPs) a "cache line map"
// or other structure, such as an offset to the next non-null JP, that would
// speed this up, but it seems unnecessary merely to avoid having a
// finite-length list (array). (If JudySL is ever made "native", the finite
// list length will be an issue.)
//
// Restarting at the top of the Judy array after a dead end requires a careful
// modification of *PIndex-1 to decrement the digit for the parent branch and
// set the remaining lower digits to all 1s. This must be repeated each time a
// parent branch contains another dead end, so even though it should all happen
// in cache, the CPU time can be excessive. (For JudySL or an equivalent
// "infinitely deep" Judy array, consider a hybrid of a large, finite,
// "circular" list and a restart-at-top when the list is backtracked to
// exhaustion.)
//
// Why search for *PIndex-1 instead of *PIndex during SM1Get? In rare
// instances this prevents an unnecessary decode down the wrong path followed
// by a backtrack; its pretty cheap to set up initially; and it means the
// SM1Get machine can simply return if/when it finds that Index.
//
// TBD: Wed like to enhance this function to make successive searches faster.
// This would require saving some previous state, including the previous Index
// returned, and in which leaf it was found. If the next call is for the same
// Index and the array has not been modified, start at the same leaf. This
// should be much easier to implement since this is iterative rather than
// recursive code.
//
// VARIATIONS FOR Judy*Next():
//
// The Judy*Next() code is nearly a perfect mirror of the Judy*Prev() code.
// See the Judy*Prev() overview comments, and mentally switch the following:
//
// - "*PIndex-1" => "*PIndex+1"
// - "less than" => "greater than"
// - "lower" => "higher"
// - "lowest" => "highest"
// - "next-left" => "next-right"
// - "right-most" => "left-most"
//
// Note: SM3Findlimit could be called SM3Findmax/SM3Findmin, but a common name
// for both Prev and Next means many fewer ifdefs in this code.
//
// TBD: Currently this code traverses a JP whether its expanse is partially or
// completely full (populated). For Judy1 (only), since there is no value area
// needed, consider shortcutting to a "success" return upon encountering a full
// JP in SM1Get (or even SM3Findlimit?) A full JP looks like this:
//
// (((JU_JPDCDPOP0(Pjp) ^ cJU_ALLONES) & cJU_POP0MASK(cLevel)) == 0)
#ifdef JUDY1
#ifdef JUDYPREV
FUNCTION int Judy1Prev
#else
FUNCTION int Judy1Next
#endif
#else
#ifdef JUDYPREV
FUNCTION PPvoid_t JudyLPrev
#else
FUNCTION PPvoid_t JudyLNext
#endif
#endif
(
Pcvoid_t PArray, // Judy array to search.
Word_t * PIndex, // starting point and result.
PJError_t PJError // optional, for returning error info.
)
{
Pjp_t Pjp, Pjp2; // current JPs.
Pjbl_t Pjbl; // Pjp->jp_Addr masked and cast to types:
Pjbb_t Pjbb;
Pjbu_t Pjbu;
// Note: The following initialization is not strictly required but it makes
// gcc -Wall happy because there is an "impossible" path from Immed handling to
// SM1LeafLImm code that looks like Pjll might be used before set:
Pjll_t Pjll = (Pjll_t) NULL;
Word_t state; // current state in SM.
Word_t digit; // next digit to decode from Index.
// Note: The following initialization is not strictly required but it makes
// gcc -Wall happy because there is an "impossible" path from Immed handling to
// SM1LeafLImm code (for JudyL & JudyPrev only) that looks like pop1 might be
// used before set:
#if (defined(JUDYL) && defined(JUDYPREV))
Word_t pop1 = 0; // in a leaf.
#else
Word_t pop1; // in a leaf.
#endif
int offset; // linear branch/leaf, from j__udySearchLeaf*().
int subexp; // subexpanse in a bitmap branch.
Word_t bitposmask; // bit in bitmap for Index.
// History for SM2Backtrack:
//
// For a given histnum, APjphist[histnum] is a parent JP that points to a
// branch, and Aoffhist[histnum] is the offset of the NEXT JP in the branch to
// which the parent JP points. The meaning of Aoffhist[histnum] depends on the
// type of branch to which the parent JP points:
//
// Linear: Offset of the next JP in the JP list.
//
// Bitmap: Which subexpanse, plus the offset of the next JP in the
// subexpanses JP list (to avoid bit-counting again), plus for Judy*Next(),
// hidden one byte to the left, which digit, because Judy*Next() also needs
// this.
//
// Uncompressed: Digit, which is actually the offset of the JP in the branch.
//
// Note: Only branch JPs are stored in APjphist[] because, as explained
// earlier, SM1Get shortcuts sideways searches in leaves (and even in branches
// in some cases), so SM2Backtrack only handles branches.
#define HISTNUMMAX cJU_ROOTSTATE // maximum branches traversable.
Pjp_t APjphist[HISTNUMMAX]; // list of branch JPs traversed.
int Aoffhist[HISTNUMMAX]; // list of next JP offsets; see above.
int histnum = 0; // number of JPs now in list.
// ----------------------------------------------------------------------------
// M A C R O S
//
// These are intended to make the code a bit more readable and less redundant.
// "PUSH" AND "POP" Pjp AND offset ON HISTORY STACKS:
//
// Note: Ensure a corrupt Judy array does not overflow *hist[]. Meanwhile,
// underflowing *hist[] simply means theres no more room to backtrack =>
// "no previous/next Index".
#define HISTPUSH(Pjp,Offset) \
APjphist[histnum] = (Pjp); \
Aoffhist[histnum] = (Offset); \
\
if (++histnum >= HISTNUMMAX) \
{ \
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT) \
JUDY1CODE(return(JERRI );) \
JUDYLCODE(return(PPJERR);) \
}
#define HISTPOP(Pjp,Offset) \
if ((histnum--) < 1) JU_RET_NOTFOUND; \
(Pjp) = APjphist[histnum]; \
(Offset) = Aoffhist[histnum]
// How to pack/unpack Aoffhist[] values for bitmap branches:
#ifdef JUDYPREV
#define HISTPUSHBOFF(Subexp,Offset,Digit) \
(((Subexp) * cJU_BITSPERSUBEXPB) | (Offset))
#define HISTPOPBOFF(Subexp,Offset,Digit) \
(Subexp) = (Offset) / cJU_BITSPERSUBEXPB; \
(Offset) %= cJU_BITSPERSUBEXPB
#else
#define HISTPUSHBOFF(Subexp,Offset,Digit) \
(((Digit) << cJU_BITSPERBYTE) \
| ((Subexp) * cJU_BITSPERSUBEXPB) | (Offset))
#define HISTPOPBOFF(Subexp,Offset,Digit) \
(Digit) = (Offset) >> cJU_BITSPERBYTE; \
(Subexp) = ((Offset) & JU_LEASTBYTESMASK(1)) / cJU_BITSPERSUBEXPB; \
(Offset) %= cJU_BITSPERSUBEXPB
#endif
// CHECK FOR NULL JP:
#define JPNULL(Type) (((Type) >= cJU_JPNULL1) && ((Type) <= cJU_JPNULLMAX))
// SEARCH A BITMAP:
//
// This is a weak analog of j__udySearchLeaf*() for bitmaps. Return the actual
// or next-left position, base 0, of Digit in the single uint32_t bitmap, also
// given a Bitposmask for Digit.
//
// Unlike j__udySearchLeaf*(), the offset is not returned bit-complemented if
// Digits bit is unset, because the caller can check the bitmap themselves to
// determine that. Also, if Digits bit is unset, the returned offset is to
// the next-left JP (including -1), not to the "ideal" position for the Index =
// next-right JP.
//
// Shortcut and skip calling j__udyCountBits*() if the bitmap is full, in which
// case (Digit % cJU_BITSPERSUBEXP*) itself is the base-0 offset.
//
// TBD for Judy*Next(): Should this return next-right instead of next-left?
// That is, +1 from current value? Maybe not, if Digits bit IS set, +1 would
// be wrong.
#define SEARCHBITMAPB(Bitmap,Digit,Bitposmask) \
(((Bitmap) == cJU_FULLBITMAPB) ? (Digit % cJU_BITSPERSUBEXPB) : \
j__udyCountBitsB((Bitmap) & JU_MASKLOWERINC(Bitposmask)) - 1)
#define SEARCHBITMAPL(Bitmap,Digit,Bitposmask) \
(((Bitmap) == cJU_FULLBITMAPL) ? (Digit % cJU_BITSPERSUBEXPL) : \
j__udyCountBitsL((Bitmap) & JU_MASKLOWERINC(Bitposmask)) - 1)
#ifdef JUDYPREV
// Equivalent to search for the highest offset in Bitmap:
#define SEARCHBITMAPMAXB(Bitmap) \
(((Bitmap) == cJU_FULLBITMAPB) ? cJU_BITSPERSUBEXPB - 1 : \
j__udyCountBitsB(Bitmap) - 1)
#define SEARCHBITMAPMAXL(Bitmap) \
(((Bitmap) == cJU_FULLBITMAPL) ? cJU_BITSPERSUBEXPL - 1 : \
j__udyCountBitsL(Bitmap) - 1)
#endif
// CHECK DECODE BYTES:
//
// Check Decode bytes in a JP against the equivalent portion of *PIndex. If
// *PIndex is lower (for Judy*Prev()) or higher (for Judy*Next()), this JP is a
// dead end (the same as if it had been absent in a linear or bitmap branch or
// null in an uncompressed branch), enter SM2Backtrack; otherwise enter
// SM3Findlimit to find the highest/lowest Index under this JP, as if the code
// had already backtracked to this JP.
#ifdef JUDYPREV
#define CDcmp__ <
#else
#define CDcmp__ >
#endif
#define CHECKDCD(cState) \
if (JU_DCDNOTMATCHINDEX(*PIndex, Pjp, cState)) \
{ \
if ((*PIndex & cJU_DCDMASK(cState)) \
CDcmp__(JU_JPDCDPOP0(Pjp) & cJU_DCDMASK(cState))) \
{ \
goto SM2Backtrack; \
} \
goto SM3Findlimit; \
}
// PREPARE TO HANDLE A LEAFW OR JRP BRANCH IN SM1:
//
// Extract a state-dependent digit from Index in a "constant" way, then jump to
// common code for multiple cases.
#define SM1PREPB(cState,Next) \
state = (cState); \
digit = JU_DIGITATSTATE(*PIndex, cState); \
goto Next
// PREPARE TO HANDLE A LEAFW OR JRP BRANCH IN SM3:
//
// Optionally save Dcd bytes into *PIndex, then save state and jump to common
// code for multiple cases.
#define SM3PREPB_DCD(cState,Next) \
JU_SETDCD(*PIndex, Pjp, cState); \
SM3PREPB(cState,Next)
#define SM3PREPB(cState,Next) state = (cState); goto Next
// ----------------------------------------------------------------------------
// CHECK FOR SHORTCUTS:
//
// Error out if PIndex is null. Execute JU_RET_NOTFOUND if the Judy array is
// empty or *PIndex is already the minimum/maximum Index possible.
//
// Note: As documented, in case of failure *PIndex may be modified.
if (PIndex == (PWord_t) NULL)
{
JU_SET_ERRNO(PJError, JU_ERRNO_NULLPINDEX);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
#ifdef JUDYPREV
if ((PArray == (Pvoid_t) NULL) || ((*PIndex)-- == 0))
#else
if ((PArray == (Pvoid_t) NULL) || ((*PIndex)++ == cJU_ALLONES))
#endif
JU_RET_NOTFOUND;
// HANDLE JRP:
//
// Before even entering SM1Get, check the JRP type. For JRP branches, traverse
// the JPM; handle LEAFW leaves directly; but look for the most common cases
// first.
// ROOT-STATE LEAF that starts with a Pop0 word; just look within the leaf:
//
// If *PIndex is in the leaf, return it; otherwise return the Index, if any,
// below where it would belong.
if (JU_LEAFW_POP0(PArray) < cJU_LEAFW_MAXPOP1) // must be a LEAFW
{
Pjlw_t Pjlw = P_JLW(PArray); // first word of leaf.
pop1 = Pjlw[0] + 1;
if ((offset = j__udySearchLeafW(Pjlw + 1, pop1, *PIndex))
>= 0) // Index is present.
{
assert(offset < pop1); // in expected range.
JU_RET_FOUND_LEAFW(Pjlw, pop1, offset); // *PIndex is set.
}
#ifdef JUDYPREV
if ((offset = ~offset) == 0) // no next-left Index.
#else
if ((offset = ~offset) >= pop1) // no next-right Index.
#endif
JU_RET_NOTFOUND;
assert(offset <= pop1); // valid result.
#ifdef JUDYPREV
*PIndex = Pjlw[offset--]; // next-left Index, base 1.
#else
*PIndex = Pjlw[offset + 1]; // next-right Index, base 1.
#endif
JU_RET_FOUND_LEAFW(Pjlw, pop1, offset); // base 0.
}
else // JRP BRANCH
{
Pjpm_t Pjpm = P_JPM(PArray);
Pjp = &(Pjpm->jpm_JP);
// goto SM1Get;
}
// ============================================================================
// STATE MACHINE 1 -- GET INDEX:
//
// Search for *PIndex (already decremented/incremented so as to be inclusive).
// If found, return it. Otherwise in theory hand off to SM2Backtrack or
// SM3Findlimit, but in practice "shortcut" by first sideways searching the
// current branch or leaf upon hitting a dead end. During sideways search,
// modify *PIndex to a new path taken.
//
// ENTRY: Pjp points to next JP to interpret, whose Decode bytes have not yet
// been checked. This JP is not yet listed in history.
//
// Note: Check Decode bytes at the start of each loop, not after looking up a
// new JP, so its easy to do constant shifts/masks, although this requires
// cautious handling of Pjp, offset, and *hist[] for correct entry to
// SM2Backtrack.
//
// EXIT: Return, or branch to SM2Backtrack or SM3Findlimit with correct
// interface, as described elsewhere.
//
// WARNING: For run-time efficiency the following cases replicate code with
// varying constants, rather than using common code with variable values!
SM1Get: // return here for next branch/leaf.
switch (JU_JPTYPE(Pjp))
{
// ----------------------------------------------------------------------------
// LINEAR BRANCH:
//
// Check Decode bytes, if any, in the current JP, then search for a JP for the
// next digit in *PIndex.
case cJU_JPBRANCH_L2: CHECKDCD(2); SM1PREPB(2, SM1BranchL);
case cJU_JPBRANCH_L3: CHECKDCD(3); SM1PREPB(3, SM1BranchL);
#ifdef JU_64BIT
case cJU_JPBRANCH_L4: CHECKDCD(4); SM1PREPB(4, SM1BranchL);
case cJU_JPBRANCH_L5: CHECKDCD(5); SM1PREPB(5, SM1BranchL);
case cJU_JPBRANCH_L6: CHECKDCD(6); SM1PREPB(6, SM1BranchL);
case cJU_JPBRANCH_L7: CHECKDCD(7); SM1PREPB(7, SM1BranchL);
#endif
case cJU_JPBRANCH_L: SM1PREPB(cJU_ROOTSTATE, SM1BranchL);
// Common code (state-independent) for all cases of linear branches:
SM1BranchL:
Pjbl = P_JBL(Pjp->jp_Addr);
// Found JP matching current digit in *PIndex; record parent JP and the next
// JPs offset, and iterate to the next JP:
if ((offset = j__udySearchLeaf1((Pjll_t) (Pjbl->jbl_Expanse),
Pjbl->jbl_NumJPs, digit)) >= 0)
{
HISTPUSH(Pjp, offset);
Pjp = (Pjbl->jbl_jp) + offset;
goto SM1Get;
}
// Dead end, no JP in BranchL for next digit in *PIndex:
//
// Get the ideal location of digits JP, and if theres no next-left/right JP
// in the BranchL, shortcut and start backtracking one level up; ignore the
// current Pjp because it points to a BranchL with no next-left/right JP.
#ifdef JUDYPREV
if ((offset = (~offset) - 1) < 0) // no next-left JP in BranchL.
#else
if ((offset = (~offset)) >= Pjbl->jbl_NumJPs) // no next-right.
#endif
goto SM2Backtrack;
// Theres a next-left/right JP in the current BranchL; save its digit in
// *PIndex and shortcut to SM3Findlimit:
JU_SETDIGIT(*PIndex, Pjbl->jbl_Expanse[offset], state);
Pjp = (Pjbl->jbl_jp) + offset;
goto SM3Findlimit;
// ----------------------------------------------------------------------------
// BITMAP BRANCH:
//
// Check Decode bytes, if any, in the current JP, then look for a JP for the
// next digit in *PIndex.
case cJU_JPBRANCH_B2: CHECKDCD(2); SM1PREPB(2, SM1BranchB);
case cJU_JPBRANCH_B3: CHECKDCD(3); SM1PREPB(3, SM1BranchB);
#ifdef JU_64BIT
case cJU_JPBRANCH_B4: CHECKDCD(4); SM1PREPB(4, SM1BranchB);
case cJU_JPBRANCH_B5: CHECKDCD(5); SM1PREPB(5, SM1BranchB);
case cJU_JPBRANCH_B6: CHECKDCD(6); SM1PREPB(6, SM1BranchB);
case cJU_JPBRANCH_B7: CHECKDCD(7); SM1PREPB(7, SM1BranchB);
#endif
case cJU_JPBRANCH_B: SM1PREPB(cJU_ROOTSTATE, SM1BranchB);
// Common code (state-independent) for all cases of bitmap branches:
SM1BranchB:
Pjbb = P_JBB(Pjp->jp_Addr);
// Locate the digits JP in the subexpanse list, if present, otherwise the
// offset of the next-left JP, if any:
subexp = digit / cJU_BITSPERSUBEXPB;
assert(subexp < cJU_NUMSUBEXPB); // falls in expected range.
bitposmask = JU_BITPOSMASKB(digit);
offset = SEARCHBITMAPB(JU_JBB_BITMAP(Pjbb, subexp), digit,
bitposmask);
// right range:
assert((offset >= -1) && (offset < (int) cJU_BITSPERSUBEXPB));
// Found JP matching current digit in *PIndex:
//
// Record the parent JP and the next JPs offset; and iterate to the next JP.
// if (JU_BITMAPTESTB(Pjbb, digit)) // slower.
if (JU_JBB_BITMAP(Pjbb, subexp) & bitposmask) // faster.
{
// not negative since at least one bit is set:
assert(offset >= 0);
HISTPUSH(Pjp, HISTPUSHBOFF(subexp, offset, digit));
if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp))) == (Pjp_t) NULL)
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
Pjp += offset;
goto SM1Get; // iterate to next JP.
}
// Dead end, no JP in BranchB for next digit in *PIndex:
//
// If theres a next-left/right JP in the current BranchB, shortcut to
// SM3Findlimit. Note: offset is already set to the correct value for the
// next-left/right JP.
#ifdef JUDYPREV
if (offset >= 0) // next-left JP is in this subexpanse.
goto SM1BranchBFindlimit;
while (--subexp >= 0) // search next-left subexpanses.
#else
if (JU_JBB_BITMAP(Pjbb, subexp) & JU_MASKHIGHEREXC(bitposmask))
{
++offset; // next-left => next-right.
goto SM1BranchBFindlimit;
}
while (++subexp < cJU_NUMSUBEXPB) // search next-right subexps.
#endif
{
if (! JU_JBB_PJP(Pjbb, subexp)) continue; // empty subexpanse.
#ifdef JUDYPREV
offset = SEARCHBITMAPMAXB(JU_JBB_BITMAP(Pjbb, subexp));
// expected range:
assert((offset >= 0) && (offset < cJU_BITSPERSUBEXPB));
#else
offset = 0;
#endif
// Save the next-left/right JPs digit in *PIndex:
SM1BranchBFindlimit:
JU_BITMAPDIGITB(digit, subexp, JU_JBB_BITMAP(Pjbb, subexp),
offset);
JU_SETDIGIT(*PIndex, digit, state);
if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp))) == (Pjp_t) NULL)
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
Pjp += offset;
goto SM3Findlimit;
}
// Theres no next-left/right JP in the BranchB:
//
// Shortcut and start backtracking one level up; ignore the current Pjp because
// it points to a BranchB with no next-left/right JP.
goto SM2Backtrack;
// ----------------------------------------------------------------------------
// UNCOMPRESSED BRANCH:
//
// Check Decode bytes, if any, in the current JP, then look for a JP for the
// next digit in *PIndex.
case cJU_JPBRANCH_U2: CHECKDCD(2); SM1PREPB(2, SM1BranchU);
case cJU_JPBRANCH_U3: CHECKDCD(3); SM1PREPB(3, SM1BranchU);
#ifdef JU_64BIT
case cJU_JPBRANCH_U4: CHECKDCD(4); SM1PREPB(4, SM1BranchU);
case cJU_JPBRANCH_U5: CHECKDCD(5); SM1PREPB(5, SM1BranchU);
case cJU_JPBRANCH_U6: CHECKDCD(6); SM1PREPB(6, SM1BranchU);
case cJU_JPBRANCH_U7: CHECKDCD(7); SM1PREPB(7, SM1BranchU);
#endif
case cJU_JPBRANCH_U: SM1PREPB(cJU_ROOTSTATE, SM1BranchU);
// Common code (state-independent) for all cases of uncompressed branches:
SM1BranchU:
Pjbu = P_JBU(Pjp->jp_Addr);
Pjp2 = (Pjbu->jbu_jp) + digit;
// Found JP matching current digit in *PIndex:
//
// Record the parent JP and the next JPs digit, and iterate to the next JP.
//
// TBD: Instead of this, just goto SM1Get, and add cJU_JPNULL* cases to the
// SM1Get state machine? Then backtrack? However, it means you cant detect
// an inappropriate cJU_JPNULL*, when it occurs in other than a BranchU, and
// return JU_RET_CORRUPT.
if (! JPNULL(JU_JPTYPE(Pjp2))) // digit has a JP.
{
HISTPUSH(Pjp, digit);
Pjp = Pjp2;
goto SM1Get;
}
// Dead end, no JP in BranchU for next digit in *PIndex:
//
// Search for a next-left/right JP in the current BranchU, and if one is found,
// save its digit in *PIndex and shortcut to SM3Findlimit:
#ifdef JUDYPREV
while (digit >= 1)
{
Pjp = (Pjbu->jbu_jp) + (--digit);
#else
while (digit < cJU_BRANCHUNUMJPS - 1)
{
Pjp = (Pjbu->jbu_jp) + (++digit);
#endif
if (JPNULL(JU_JPTYPE(Pjp))) continue;
JU_SETDIGIT(*PIndex, digit, state);
goto SM3Findlimit;
}
// Theres no next-left/right JP in the BranchU:
//
// Shortcut and start backtracking one level up; ignore the current Pjp because
// it points to a BranchU with no next-left/right JP.
goto SM2Backtrack;
// ----------------------------------------------------------------------------
// LINEAR LEAF:
//
// Check Decode bytes, if any, in the current JP, then search the leaf for
// *PIndex.
#define SM1LEAFL(Func) \
Pjll = P_JLL(Pjp->jp_Addr); \
pop1 = JU_JPLEAF_POP0(Pjp) + 1; \
offset = Func(Pjll, pop1, *PIndex); \
goto SM1LeafLImm
#if (defined(JUDYL) || (! defined(JU_64BIT)))
case cJU_JPLEAF1: CHECKDCD(1); SM1LEAFL(j__udySearchLeaf1);
#endif
case cJU_JPLEAF2: CHECKDCD(2); SM1LEAFL(j__udySearchLeaf2);
case cJU_JPLEAF3: CHECKDCD(3); SM1LEAFL(j__udySearchLeaf3);
#ifdef JU_64BIT
case cJU_JPLEAF4: CHECKDCD(4); SM1LEAFL(j__udySearchLeaf4);
case cJU_JPLEAF5: CHECKDCD(5); SM1LEAFL(j__udySearchLeaf5);
case cJU_JPLEAF6: CHECKDCD(6); SM1LEAFL(j__udySearchLeaf6);
case cJU_JPLEAF7: CHECKDCD(7); SM1LEAFL(j__udySearchLeaf7);
#endif
// Common code (state-independent) for all cases of linear leaves and
// immediates:
SM1LeafLImm:
if (offset >= 0) // *PIndex is in LeafL / Immed.
#ifdef JUDY1
JU_RET_FOUND;
#else
{ // JudyL is trickier...
switch (JU_JPTYPE(Pjp))
{
#if (defined(JUDYL) || (! defined(JU_64BIT)))
case cJU_JPLEAF1: JU_RET_FOUND_LEAF1(Pjll, pop1, offset);
#endif
case cJU_JPLEAF2: JU_RET_FOUND_LEAF2(Pjll, pop1, offset);
case cJU_JPLEAF3: JU_RET_FOUND_LEAF3(Pjll, pop1, offset);
#ifdef JU_64BIT
case cJU_JPLEAF4: JU_RET_FOUND_LEAF4(Pjll, pop1, offset);
case cJU_JPLEAF5: JU_RET_FOUND_LEAF5(Pjll, pop1, offset);
case cJU_JPLEAF6: JU_RET_FOUND_LEAF6(Pjll, pop1, offset);
case cJU_JPLEAF7: JU_RET_FOUND_LEAF7(Pjll, pop1, offset);
#endif
case cJU_JPIMMED_1_01:
case cJU_JPIMMED_2_01:
case cJU_JPIMMED_3_01:
#ifdef JU_64BIT
case cJU_JPIMMED_4_01:
case cJU_JPIMMED_5_01:
case cJU_JPIMMED_6_01:
case cJU_JPIMMED_7_01:
#endif
JU_RET_FOUND_IMM_01(Pjp);
case cJU_JPIMMED_1_02:
case cJU_JPIMMED_1_03:
#ifdef JU_64BIT
case cJU_JPIMMED_1_04:
case cJU_JPIMMED_1_05:
case cJU_JPIMMED_1_06:
case cJU_JPIMMED_1_07:
case cJU_JPIMMED_2_02:
case cJU_JPIMMED_2_03:
case cJU_JPIMMED_3_02:
#endif
JU_RET_FOUND_IMM(Pjp, offset);
}
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT); // impossible?
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
} // found *PIndex
#endif // JUDYL
// Dead end, no Index in LeafL / Immed for remaining digit(s) in *PIndex:
//
// Get the ideal location of Index, and if theres no next-left/right Index in
// the LeafL / Immed, shortcut and start backtracking one level up; ignore the
// current Pjp because it points to a LeafL / Immed with no next-left/right
// Index.
#ifdef JUDYPREV
if ((offset = (~offset) - 1) < 0) // no next-left Index.
#else
if ((offset = (~offset)) >= pop1) // no next-right Index.
#endif
goto SM2Backtrack;
// Theres a next-left/right Index in the current LeafL / Immed; shortcut by
// copying its digit(s) to *PIndex and returning it.
//
// Unfortunately this is pretty hairy, especially avoiding endian issues.
//
// The cJU_JPLEAF* cases are very similar to same-index-size cJU_JPIMMED* cases
// for *_02 and above, but must return differently, at least for JudyL, so
// spell them out separately here at the cost of a little redundant code for
// Judy1.
switch (JU_JPTYPE(Pjp))
{
#if (defined(JUDYL) || (! defined(JU_64BIT)))
case cJU_JPLEAF1:
JU_SETDIGIT1(*PIndex, ((uint8_t *) Pjll)[offset]);
JU_RET_FOUND_LEAF1(Pjll, pop1, offset);
#endif
case cJU_JPLEAF2:
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(2)))
| ((uint16_t *) Pjll)[offset];
JU_RET_FOUND_LEAF2(Pjll, pop1, offset);
case cJU_JPLEAF3:
{
Word_t lsb;
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (3 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
JU_RET_FOUND_LEAF3(Pjll, pop1, offset);
}
#ifdef JU_64BIT
case cJU_JPLEAF4:
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(4)))
| ((uint32_t *) Pjll)[offset];
JU_RET_FOUND_LEAF4(Pjll, pop1, offset);
case cJU_JPLEAF5:
{
Word_t lsb;
JU_COPY5_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (5 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(5))) | lsb;
JU_RET_FOUND_LEAF5(Pjll, pop1, offset);
}
case cJU_JPLEAF6:
{
Word_t lsb;
JU_COPY6_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (6 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(6))) | lsb;
JU_RET_FOUND_LEAF6(Pjll, pop1, offset);
}
case cJU_JPLEAF7:
{
Word_t lsb;
JU_COPY7_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (7 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(7))) | lsb;
JU_RET_FOUND_LEAF7(Pjll, pop1, offset);
}
#endif // JU_64BIT
#define SET_01(cState) JU_SETDIGITS(*PIndex, JU_JPDCDPOP0(Pjp), cState)
case cJU_JPIMMED_1_01: SET_01(1); goto SM1Imm_01;
case cJU_JPIMMED_2_01: SET_01(2); goto SM1Imm_01;
case cJU_JPIMMED_3_01: SET_01(3); goto SM1Imm_01;
#ifdef JU_64BIT
case cJU_JPIMMED_4_01: SET_01(4); goto SM1Imm_01;
case cJU_JPIMMED_5_01: SET_01(5); goto SM1Imm_01;
case cJU_JPIMMED_6_01: SET_01(6); goto SM1Imm_01;
case cJU_JPIMMED_7_01: SET_01(7); goto SM1Imm_01;
#endif
SM1Imm_01: JU_RET_FOUND_IMM_01(Pjp);
// Shorthand for where to find start of Index bytes array:
#ifdef JUDY1
#define PJI (Pjp->jp_1Index)
#else
#define PJI (Pjp->jp_LIndex)
#endif
case cJU_JPIMMED_1_02:
case cJU_JPIMMED_1_03:
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_1_04:
case cJU_JPIMMED_1_05:
case cJU_JPIMMED_1_06:
case cJU_JPIMMED_1_07:
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_1_08:
case cJ1_JPIMMED_1_09:
case cJ1_JPIMMED_1_10:
case cJ1_JPIMMED_1_11:
case cJ1_JPIMMED_1_12:
case cJ1_JPIMMED_1_13:
case cJ1_JPIMMED_1_14:
case cJ1_JPIMMED_1_15:
#endif
JU_SETDIGIT1(*PIndex, ((uint8_t *) PJI)[offset]);
JU_RET_FOUND_IMM(Pjp, offset);
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_2_02:
case cJU_JPIMMED_2_03:
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_2_04:
case cJ1_JPIMMED_2_05:
case cJ1_JPIMMED_2_06:
case cJ1_JPIMMED_2_07:
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(2)))
| ((uint16_t *) PJI)[offset];
JU_RET_FOUND_IMM(Pjp, offset);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_3_02:
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_3_03:
case cJ1_JPIMMED_3_04:
case cJ1_JPIMMED_3_05:
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
{
Word_t lsb;
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (3 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_4_02:
case cJ1_JPIMMED_4_03:
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(4)))
| ((uint32_t *) PJI)[offset];
JU_RET_FOUND_IMM(Pjp, offset);
case cJ1_JPIMMED_5_02:
case cJ1_JPIMMED_5_03:
{
Word_t lsb;
JU_COPY5_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (5 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(5))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
case cJ1_JPIMMED_6_02:
{
Word_t lsb;
JU_COPY6_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (6 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(6))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
case cJ1_JPIMMED_7_02:
{
Word_t lsb;
JU_COPY7_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (7 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(7))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
#endif // (JUDY1 && JU_64BIT)
} // switch for not-found *PIndex
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT); // impossible?
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
// ----------------------------------------------------------------------------
// BITMAP LEAF:
//
// Check Decode bytes, if any, in the current JP, then look in the leaf for
// *PIndex.
case cJU_JPLEAF_B1:
{
Pjlb_t Pjlb;
CHECKDCD(1);
Pjlb = P_JLB(Pjp->jp_Addr);
digit = JU_DIGITATSTATE(*PIndex, 1);
subexp = JU_SUBEXPL(digit);
bitposmask = JU_BITPOSMASKL(digit);
assert(subexp < cJU_NUMSUBEXPL); // falls in expected range.
// *PIndex exists in LeafB1:
// if (JU_BITMAPTESTL(Pjlb, digit)) // slower.
if (JU_JLB_BITMAP(Pjlb, subexp) & bitposmask) // faster.
{
#ifdef JUDYL // needs offset at this point:
offset = SEARCHBITMAPL(JU_JLB_BITMAP(Pjlb, subexp), digit, bitposmask);
#endif
JU_RET_FOUND_LEAF_B1(Pjlb, subexp, offset);
// == return((PPvoid_t) (P_JV(JL_JLB_PVALUE(Pjlb, subexp)) + (offset)));
}
// Dead end, no Index in LeafB1 for remaining digit in *PIndex:
//
// If theres a next-left/right Index in the current LeafB1, which for
// Judy*Next() is true if any bits are set for higher Indexes, shortcut by
// returning it. Note: For Judy*Prev(), offset is set here to the correct
// value for the next-left JP.
offset = SEARCHBITMAPL(JU_JLB_BITMAP(Pjlb, subexp), digit,
bitposmask);
// right range:
assert((offset >= -1) && (offset < (int) cJU_BITSPERSUBEXPL));
#ifdef JUDYPREV
if (offset >= 0) // next-left JP is in this subexpanse.
goto SM1LeafB1Findlimit;
while (--subexp >= 0) // search next-left subexpanses.
#else
if (JU_JLB_BITMAP(Pjlb, subexp) & JU_MASKHIGHEREXC(bitposmask))
{
++offset; // next-left => next-right.
goto SM1LeafB1Findlimit;
}
while (++subexp < cJU_NUMSUBEXPL) // search next-right subexps.
#endif
{
if (! JU_JLB_BITMAP(Pjlb, subexp)) continue; // empty subexp.
#ifdef JUDYPREV
offset = SEARCHBITMAPMAXL(JU_JLB_BITMAP(Pjlb, subexp));
// expected range:
assert((offset >= 0) && (offset < (int) cJU_BITSPERSUBEXPL));
#else
offset = 0;
#endif
// Save the next-left/right Indexess digit in *PIndex:
SM1LeafB1Findlimit:
JU_BITMAPDIGITL(digit, subexp, JU_JLB_BITMAP(Pjlb, subexp), offset);
JU_SETDIGIT1(*PIndex, digit);
JU_RET_FOUND_LEAF_B1(Pjlb, subexp, offset);
// == return((PPvoid_t) (P_JV(JL_JLB_PVALUE(Pjlb, subexp)) + (offset)));
}
// Theres no next-left/right Index in the LeafB1:
//
// Shortcut and start backtracking one level up; ignore the current Pjp because
// it points to a LeafB1 with no next-left/right Index.
goto SM2Backtrack;
} // case cJU_JPLEAF_B1
#ifdef JUDY1
// ----------------------------------------------------------------------------
// FULL POPULATION:
//
// If the Decode bytes match, *PIndex is found (without modification).
case cJ1_JPFULLPOPU1:
CHECKDCD(1);
JU_RET_FOUND_FULLPOPU1;
#endif
// ----------------------------------------------------------------------------
// IMMEDIATE:
#ifdef JUDYPREV
#define SM1IMM_SETPOP1(cPop1)
#else
#define SM1IMM_SETPOP1(cPop1) pop1 = (cPop1)
#endif
#define SM1IMM(Func,cPop1) \
SM1IMM_SETPOP1(cPop1); \
offset = Func((Pjll_t) (PJI), cPop1, *PIndex); \
goto SM1LeafLImm
// Special case for Pop1 = 1 Immediate JPs:
//
// If *PIndex is in the immediate, offset is 0, otherwise the binary NOT of the
// offset where it belongs, 0 or 1, same as from the search functions.
#ifdef JUDYPREV
#define SM1IMM_01_SETPOP1
#else
#define SM1IMM_01_SETPOP1 pop1 = 1
#endif
#define SM1IMM_01 \
SM1IMM_01_SETPOP1; \
offset = ((JU_JPDCDPOP0(Pjp) < JU_TRIMTODCDSIZE(*PIndex)) ? ~1 : \
(JU_JPDCDPOP0(Pjp) == JU_TRIMTODCDSIZE(*PIndex)) ? 0 : \
~0); \
goto SM1LeafLImm
case cJU_JPIMMED_1_01:
case cJU_JPIMMED_2_01:
case cJU_JPIMMED_3_01:
#ifdef JU_64BIT
case cJU_JPIMMED_4_01:
case cJU_JPIMMED_5_01:
case cJU_JPIMMED_6_01:
case cJU_JPIMMED_7_01:
#endif
SM1IMM_01;
// TBD: Doug says it would be OK to have fewer calls and calculate arg 2, here
// and in Judy*Count() also.
case cJU_JPIMMED_1_02: SM1IMM(j__udySearchLeaf1, 2);
case cJU_JPIMMED_1_03: SM1IMM(j__udySearchLeaf1, 3);
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_1_04: SM1IMM(j__udySearchLeaf1, 4);
case cJU_JPIMMED_1_05: SM1IMM(j__udySearchLeaf1, 5);
case cJU_JPIMMED_1_06: SM1IMM(j__udySearchLeaf1, 6);
case cJU_JPIMMED_1_07: SM1IMM(j__udySearchLeaf1, 7);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_1_08: SM1IMM(j__udySearchLeaf1, 8);
case cJ1_JPIMMED_1_09: SM1IMM(j__udySearchLeaf1, 9);
case cJ1_JPIMMED_1_10: SM1IMM(j__udySearchLeaf1, 10);
case cJ1_JPIMMED_1_11: SM1IMM(j__udySearchLeaf1, 11);
case cJ1_JPIMMED_1_12: SM1IMM(j__udySearchLeaf1, 12);
case cJ1_JPIMMED_1_13: SM1IMM(j__udySearchLeaf1, 13);
case cJ1_JPIMMED_1_14: SM1IMM(j__udySearchLeaf1, 14);
case cJ1_JPIMMED_1_15: SM1IMM(j__udySearchLeaf1, 15);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_2_02: SM1IMM(j__udySearchLeaf2, 2);
case cJU_JPIMMED_2_03: SM1IMM(j__udySearchLeaf2, 3);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_2_04: SM1IMM(j__udySearchLeaf2, 4);
case cJ1_JPIMMED_2_05: SM1IMM(j__udySearchLeaf2, 5);
case cJ1_JPIMMED_2_06: SM1IMM(j__udySearchLeaf2, 6);
case cJ1_JPIMMED_2_07: SM1IMM(j__udySearchLeaf2, 7);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_3_02: SM1IMM(j__udySearchLeaf3, 2);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_3_03: SM1IMM(j__udySearchLeaf3, 3);
case cJ1_JPIMMED_3_04: SM1IMM(j__udySearchLeaf3, 4);
case cJ1_JPIMMED_3_05: SM1IMM(j__udySearchLeaf3, 5);
case cJ1_JPIMMED_4_02: SM1IMM(j__udySearchLeaf4, 2);
case cJ1_JPIMMED_4_03: SM1IMM(j__udySearchLeaf4, 3);
case cJ1_JPIMMED_5_02: SM1IMM(j__udySearchLeaf5, 2);
case cJ1_JPIMMED_5_03: SM1IMM(j__udySearchLeaf5, 3);
case cJ1_JPIMMED_6_02: SM1IMM(j__udySearchLeaf6, 2);
case cJ1_JPIMMED_7_02: SM1IMM(j__udySearchLeaf7, 2);
#endif
// ----------------------------------------------------------------------------
// INVALID JP TYPE:
default: JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
} // SM1Get switch.
/*NOTREACHED*/
// ============================================================================
// STATE MACHINE 2 -- BACKTRACK BRANCH TO PREVIOUS JP:
//
// Look for the next-left/right JP in a branch, backing up the history list as
// necessary. Upon finding a next-left/right JP, modify the corresponding
// digit in *PIndex before passing control to SM3Findlimit.
//
// Note: As described earlier, only branch JPs are expected here; other types
// fall into the default case.
//
// Note: If a found JP contains needed Dcd bytes, thats OK, theyre copied to
// *PIndex in SM3Findlimit.
//
// TBD: This code has a lot in common with similar code in the shortcut cases
// in SM1Get. Can combine this code somehow?
//
// ENTRY: List, possibly empty, of JPs and offsets in APjphist[] and
// Aoffhist[]; see earlier comments.
//
// EXIT: Execute JU_RET_NOTFOUND if no previous/next JP; otherwise jump to
// SM3Findlimit to resume a new but different downward search.
SM2Backtrack: // come or return here for first/next sideways search.
HISTPOP(Pjp, offset);
switch (JU_JPTYPE(Pjp))
{
// ----------------------------------------------------------------------------
// LINEAR BRANCH:
case cJU_JPBRANCH_L2: state = 2; goto SM2BranchL;
case cJU_JPBRANCH_L3: state = 3; goto SM2BranchL;
#ifdef JU_64BIT
case cJU_JPBRANCH_L4: state = 4; goto SM2BranchL;
case cJU_JPBRANCH_L5: state = 5; goto SM2BranchL;
case cJU_JPBRANCH_L6: state = 6; goto SM2BranchL;
case cJU_JPBRANCH_L7: state = 7; goto SM2BranchL;
#endif
case cJU_JPBRANCH_L: state = cJU_ROOTSTATE; goto SM2BranchL;
SM2BranchL:
#ifdef JUDYPREV
if (--offset < 0) goto SM2Backtrack; // no next-left JP in BranchL.
#endif
Pjbl = P_JBL(Pjp->jp_Addr);
#ifdef JUDYNEXT
if (++offset >= (Pjbl->jbl_NumJPs)) goto SM2Backtrack;
// no next-right JP in BranchL.
#endif
// Theres a next-left/right JP in the current BranchL; save its digit in
// *PIndex and continue with SM3Findlimit:
JU_SETDIGIT(*PIndex, Pjbl->jbl_Expanse[offset], state);
Pjp = (Pjbl->jbl_jp) + offset;
goto SM3Findlimit;
// ----------------------------------------------------------------------------
// BITMAP BRANCH:
case cJU_JPBRANCH_B2: state = 2; goto SM2BranchB;
case cJU_JPBRANCH_B3: state = 3; goto SM2BranchB;
#ifdef JU_64BIT
case cJU_JPBRANCH_B4: state = 4; goto SM2BranchB;
case cJU_JPBRANCH_B5: state = 5; goto SM2BranchB;
case cJU_JPBRANCH_B6: state = 6; goto SM2BranchB;
case cJU_JPBRANCH_B7: state = 7; goto SM2BranchB;
#endif
case cJU_JPBRANCH_B: state = cJU_ROOTSTATE; goto SM2BranchB;
SM2BranchB:
Pjbb = P_JBB(Pjp->jp_Addr);
HISTPOPBOFF(subexp, offset, digit); // unpack values.
// If theres a next-left/right JP in the current BranchB, which for
// Judy*Next() is true if any bits are set for higher Indexes, continue to
// SM3Findlimit:
//
// Note: offset is set to the JP previously traversed; go one to the
// left/right.
#ifdef JUDYPREV
if (offset > 0) // next-left JP is in this subexpanse.
{
--offset;
goto SM2BranchBFindlimit;
}
while (--subexp >= 0) // search next-left subexpanses.
#else
if (JU_JBB_BITMAP(Pjbb, subexp)
& JU_MASKHIGHEREXC(JU_BITPOSMASKB(digit)))
{
++offset; // next-left => next-right.
goto SM2BranchBFindlimit;
}
while (++subexp < cJU_NUMSUBEXPB) // search next-right subexps.
#endif
{
if (! JU_JBB_PJP(Pjbb, subexp)) continue; // empty subexpanse.
#ifdef JUDYPREV
offset = SEARCHBITMAPMAXB(JU_JBB_BITMAP(Pjbb, subexp));
// expected range:
assert((offset >= 0) && (offset < cJU_BITSPERSUBEXPB));
#else
offset = 0;
#endif
// Save the next-left/right JPs digit in *PIndex:
SM2BranchBFindlimit:
JU_BITMAPDIGITB(digit, subexp, JU_JBB_BITMAP(Pjbb, subexp),
offset);
JU_SETDIGIT(*PIndex, digit, state);
if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp))) == (Pjp_t) NULL)
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
Pjp += offset;
goto SM3Findlimit;
}
// Theres no next-left/right JP in the BranchB:
goto SM2Backtrack;
// ----------------------------------------------------------------------------
// UNCOMPRESSED BRANCH:
case cJU_JPBRANCH_U2: state = 2; goto SM2BranchU;
case cJU_JPBRANCH_U3: state = 3; goto SM2BranchU;
#ifdef JU_64BIT
case cJU_JPBRANCH_U4: state = 4; goto SM2BranchU;
case cJU_JPBRANCH_U5: state = 5; goto SM2BranchU;
case cJU_JPBRANCH_U6: state = 6; goto SM2BranchU;
case cJU_JPBRANCH_U7: state = 7; goto SM2BranchU;
#endif
case cJU_JPBRANCH_U: state = cJU_ROOTSTATE; goto SM2BranchU;
SM2BranchU:
// Search for a next-left/right JP in the current BranchU, and if one is found,
// save its digit in *PIndex and continue to SM3Findlimit:
Pjbu = P_JBU(Pjp->jp_Addr);
digit = offset;
#ifdef JUDYPREV
while (digit >= 1)
{
Pjp = (Pjbu->jbu_jp) + (--digit);
#else
while (digit < cJU_BRANCHUNUMJPS - 1)
{
Pjp = (Pjbu->jbu_jp) + (++digit);
#endif
if (JPNULL(JU_JPTYPE(Pjp))) continue;
JU_SETDIGIT(*PIndex, digit, state);
goto SM3Findlimit;
}
// Theres no next-left/right JP in the BranchU:
goto SM2Backtrack;
// ----------------------------------------------------------------------------
// INVALID JP TYPE:
default: JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
} // SM2Backtrack switch.
/*NOTREACHED*/
// ============================================================================
// STATE MACHINE 3 -- FIND LIMIT JP/INDEX:
//
// Look for the highest/lowest (right/left-most) JP in each branch and the
// highest/lowest Index in a leaf or immediate, and return it. While
// traversing, modify appropriate digit(s) in *PIndex to reflect the path
// taken, including Dcd bytes in each JP (which could hold critical missing
// digits for skipped branches).
//
// ENTRY: Pjp set to a JP under which to find max/min JPs (if a branch JP) or
// a max/min Index and return (if a leaf or immediate JP).
//
// EXIT: Execute JU_RET_FOUND* upon reaching a leaf or immediate. Should be
// impossible to fail, unless the Judy array is corrupt.
SM3Findlimit: // come or return here for first/next branch/leaf.
switch (JU_JPTYPE(Pjp))
{
// ----------------------------------------------------------------------------
// LINEAR BRANCH:
//
// Simply use the highest/lowest (right/left-most) JP in the BranchL, but first
// copy the Dcd bytes to *PIndex if there are any (only if state <
// cJU_ROOTSTATE - 1).
case cJU_JPBRANCH_L2: SM3PREPB_DCD(2, SM3BranchL);
#ifndef JU_64BIT
case cJU_JPBRANCH_L3: SM3PREPB( 3, SM3BranchL);
#else
case cJU_JPBRANCH_L3: SM3PREPB_DCD(3, SM3BranchL);
case cJU_JPBRANCH_L4: SM3PREPB_DCD(4, SM3BranchL);
case cJU_JPBRANCH_L5: SM3PREPB_DCD(5, SM3BranchL);
case cJU_JPBRANCH_L6: SM3PREPB_DCD(6, SM3BranchL);
case cJU_JPBRANCH_L7: SM3PREPB( 7, SM3BranchL);
#endif
case cJU_JPBRANCH_L: SM3PREPB( cJU_ROOTSTATE, SM3BranchL);
SM3BranchL:
Pjbl = P_JBL(Pjp->jp_Addr);
#ifdef JUDYPREV
if ((offset = (Pjbl->jbl_NumJPs) - 1) < 0)
#else
offset = 0; if ((Pjbl->jbl_NumJPs) == 0)
#endif
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
JU_SETDIGIT(*PIndex, Pjbl->jbl_Expanse[offset], state);
Pjp = (Pjbl->jbl_jp) + offset;
goto SM3Findlimit;
// ----------------------------------------------------------------------------
// BITMAP BRANCH:
//
// Look for the highest/lowest (right/left-most) non-null subexpanse, then use
// the highest/lowest JP in that subexpanse, but first copy Dcd bytes, if there
// are any (only if state < cJU_ROOTSTATE - 1), to *PIndex.
case cJU_JPBRANCH_B2: SM3PREPB_DCD(2, SM3BranchB);
#ifndef JU_64BIT
case cJU_JPBRANCH_B3: SM3PREPB( 3, SM3BranchB);
#else
case cJU_JPBRANCH_B3: SM3PREPB_DCD(3, SM3BranchB);
case cJU_JPBRANCH_B4: SM3PREPB_DCD(4, SM3BranchB);
case cJU_JPBRANCH_B5: SM3PREPB_DCD(5, SM3BranchB);
case cJU_JPBRANCH_B6: SM3PREPB_DCD(6, SM3BranchB);
case cJU_JPBRANCH_B7: SM3PREPB( 7, SM3BranchB);
#endif
case cJU_JPBRANCH_B: SM3PREPB( cJU_ROOTSTATE, SM3BranchB);
SM3BranchB:
Pjbb = P_JBB(Pjp->jp_Addr);
#ifdef JUDYPREV
subexp = cJU_NUMSUBEXPB;
while (! (JU_JBB_BITMAP(Pjbb, --subexp))) // find non-empty subexp.
{
if (subexp <= 0) // wholly empty bitmap.
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
}
offset = SEARCHBITMAPMAXB(JU_JBB_BITMAP(Pjbb, subexp));
// expected range:
assert((offset >= 0) && (offset < cJU_BITSPERSUBEXPB));
#else
subexp = -1;
while (! (JU_JBB_BITMAP(Pjbb, ++subexp))) // find non-empty subexp.
{
if (subexp >= cJU_NUMSUBEXPB - 1) // didnt find one.
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
}
offset = 0;
#endif
JU_BITMAPDIGITB(digit, subexp, JU_JBB_BITMAP(Pjbb, subexp), offset);
JU_SETDIGIT(*PIndex, digit, state);
if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp))) == (Pjp_t) NULL)
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
Pjp += offset;
goto SM3Findlimit;
// ----------------------------------------------------------------------------
// UNCOMPRESSED BRANCH:
//
// Look for the highest/lowest (right/left-most) non-null JP, and use it, but
// first copy Dcd bytes to *PIndex if there are any (only if state <
// cJU_ROOTSTATE - 1).
case cJU_JPBRANCH_U2: SM3PREPB_DCD(2, SM3BranchU);
#ifndef JU_64BIT
case cJU_JPBRANCH_U3: SM3PREPB( 3, SM3BranchU);
#else
case cJU_JPBRANCH_U3: SM3PREPB_DCD(3, SM3BranchU);
case cJU_JPBRANCH_U4: SM3PREPB_DCD(4, SM3BranchU);
case cJU_JPBRANCH_U5: SM3PREPB_DCD(5, SM3BranchU);
case cJU_JPBRANCH_U6: SM3PREPB_DCD(6, SM3BranchU);
case cJU_JPBRANCH_U7: SM3PREPB( 7, SM3BranchU);
#endif
case cJU_JPBRANCH_U: SM3PREPB( cJU_ROOTSTATE, SM3BranchU);
SM3BranchU:
Pjbu = P_JBU(Pjp->jp_Addr);
#ifdef JUDYPREV
digit = cJU_BRANCHUNUMJPS;
while (digit >= 1)
{
Pjp = (Pjbu->jbu_jp) + (--digit);
#else
for (digit = 0; digit < cJU_BRANCHUNUMJPS; ++digit)
{
Pjp = (Pjbu->jbu_jp) + digit;
#endif
if (JPNULL(JU_JPTYPE(Pjp))) continue;
JU_SETDIGIT(*PIndex, digit, state);
goto SM3Findlimit;
}
// No non-null JPs in BranchU:
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
// ----------------------------------------------------------------------------
// LINEAR LEAF:
//
// Simply use the highest/lowest (right/left-most) Index in the LeafL, but the
// details vary depending on leaf Index Size. First copy Dcd bytes, if there
// are any (only if state < cJU_ROOTSTATE - 1), to *PIndex.
#define SM3LEAFLDCD(cState) \
JU_SETDCD(*PIndex, Pjp, cState); \
SM3LEAFLNODCD
#ifdef JUDY1
#define SM3LEAFL_SETPOP1 // not needed in any cases.
#else
#define SM3LEAFL_SETPOP1 pop1 = JU_JPLEAF_POP0(Pjp) + 1
#endif
#ifdef JUDYPREV
#define SM3LEAFLNODCD \
Pjll = P_JLL(Pjp->jp_Addr); \
SM3LEAFL_SETPOP1; \
offset = JU_JPLEAF_POP0(Pjp); assert(offset >= 0)
#else
#define SM3LEAFLNODCD \
Pjll = P_JLL(Pjp->jp_Addr); \
SM3LEAFL_SETPOP1; \
offset = 0; assert(JU_JPLEAF_POP0(Pjp) >= 0);
#endif
#if (defined(JUDYL) || (! defined(JU_64BIT)))
case cJU_JPLEAF1:
SM3LEAFLDCD(1);
JU_SETDIGIT1(*PIndex, ((uint8_t *) Pjll)[offset]);
JU_RET_FOUND_LEAF1(Pjll, pop1, offset);
#endif
case cJU_JPLEAF2:
SM3LEAFLDCD(2);
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(2)))
| ((uint16_t *) Pjll)[offset];
JU_RET_FOUND_LEAF2(Pjll, pop1, offset);
#ifndef JU_64BIT
case cJU_JPLEAF3:
{
Word_t lsb;
SM3LEAFLNODCD;
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (3 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
JU_RET_FOUND_LEAF3(Pjll, pop1, offset);
}
#else
case cJU_JPLEAF3:
{
Word_t lsb;
SM3LEAFLDCD(3);
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (3 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
JU_RET_FOUND_LEAF3(Pjll, pop1, offset);
}
case cJU_JPLEAF4:
SM3LEAFLDCD(4);
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(4)))
| ((uint32_t *) Pjll)[offset];
JU_RET_FOUND_LEAF4(Pjll, pop1, offset);
case cJU_JPLEAF5:
{
Word_t lsb;
SM3LEAFLDCD(5);
JU_COPY5_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (5 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(5))) | lsb;
JU_RET_FOUND_LEAF5(Pjll, pop1, offset);
}
case cJU_JPLEAF6:
{
Word_t lsb;
SM3LEAFLDCD(6);
JU_COPY6_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (6 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(6))) | lsb;
JU_RET_FOUND_LEAF6(Pjll, pop1, offset);
}
case cJU_JPLEAF7:
{
Word_t lsb;
SM3LEAFLNODCD;
JU_COPY7_PINDEX_TO_LONG(lsb, ((uint8_t *) Pjll) + (7 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(7))) | lsb;
JU_RET_FOUND_LEAF7(Pjll, pop1, offset);
}
#endif
// ----------------------------------------------------------------------------
// BITMAP LEAF:
//
// Look for the highest/lowest (right/left-most) non-null subexpanse, then use
// the highest/lowest Index in that subexpanse, but first copy Dcd bytes
// (always present since state 1 < cJU_ROOTSTATE) to *PIndex.
case cJU_JPLEAF_B1:
{
Pjlb_t Pjlb;
JU_SETDCD(*PIndex, Pjp, 1);
Pjlb = P_JLB(Pjp->jp_Addr);
#ifdef JUDYPREV
subexp = cJU_NUMSUBEXPL;
while (! JU_JLB_BITMAP(Pjlb, --subexp)) // find non-empty subexp.
{
if (subexp <= 0) // wholly empty bitmap.
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
}
// TBD: Might it be faster to just use a variant of BITMAPDIGIT*() that yields
// the digit for the right-most Index with a bit set?
offset = SEARCHBITMAPMAXL(JU_JLB_BITMAP(Pjlb, subexp));
// expected range:
assert((offset >= 0) && (offset < cJU_BITSPERSUBEXPL));
#else
subexp = -1;
while (! JU_JLB_BITMAP(Pjlb, ++subexp)) // find non-empty subexp.
{
if (subexp >= cJU_NUMSUBEXPL - 1) // didnt find one.
{
JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
}
}
offset = 0;
#endif
JU_BITMAPDIGITL(digit, subexp, JU_JLB_BITMAP(Pjlb, subexp), offset);
JU_SETDIGIT1(*PIndex, digit);
JU_RET_FOUND_LEAF_B1(Pjlb, subexp, offset);
// == return((PPvoid_t) (P_JV(JL_JLB_PVALUE(Pjlb, subexp)) + (offset)));
} // case cJU_JPLEAF_B1
#ifdef JUDY1
// ----------------------------------------------------------------------------
// FULL POPULATION:
//
// Copy Dcd bytes to *PIndex (always present since state 1 < cJU_ROOTSTATE),
// then set the highest/lowest possible digit as the LSB in *PIndex.
case cJ1_JPFULLPOPU1:
JU_SETDCD( *PIndex, Pjp, 1);
#ifdef JUDYPREV
JU_SETDIGIT1(*PIndex, cJU_BITSPERBITMAP - 1);
#else
JU_SETDIGIT1(*PIndex, 0);
#endif
JU_RET_FOUND_FULLPOPU1;
#endif // JUDY1
// ----------------------------------------------------------------------------
// IMMEDIATE:
//
// Simply use the highest/lowest (right/left-most) Index in the Imm, but the
// details vary depending on leaf Index Size and pop1. Note: There are no Dcd
// bytes in an Immediate JP, but in a cJU_JPIMMED_*_01 JP, the field holds the
// least bytes of the immediate Index.
case cJU_JPIMMED_1_01: SET_01(1); goto SM3Imm_01;
case cJU_JPIMMED_2_01: SET_01(2); goto SM3Imm_01;
case cJU_JPIMMED_3_01: SET_01(3); goto SM3Imm_01;
#ifdef JU_64BIT
case cJU_JPIMMED_4_01: SET_01(4); goto SM3Imm_01;
case cJU_JPIMMED_5_01: SET_01(5); goto SM3Imm_01;
case cJU_JPIMMED_6_01: SET_01(6); goto SM3Imm_01;
case cJU_JPIMMED_7_01: SET_01(7); goto SM3Imm_01;
#endif
SM3Imm_01: JU_RET_FOUND_IMM_01(Pjp);
#ifdef JUDYPREV
#define SM3IMM_OFFSET(cPop1) (cPop1) - 1 // highest.
#else
#define SM3IMM_OFFSET(cPop1) 0 // lowest.
#endif
#define SM3IMM(cPop1,Next) \
offset = SM3IMM_OFFSET(cPop1); \
goto Next
case cJU_JPIMMED_1_02: SM3IMM( 2, SM3Imm1);
case cJU_JPIMMED_1_03: SM3IMM( 3, SM3Imm1);
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_1_04: SM3IMM( 4, SM3Imm1);
case cJU_JPIMMED_1_05: SM3IMM( 5, SM3Imm1);
case cJU_JPIMMED_1_06: SM3IMM( 6, SM3Imm1);
case cJU_JPIMMED_1_07: SM3IMM( 7, SM3Imm1);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_1_08: SM3IMM( 8, SM3Imm1);
case cJ1_JPIMMED_1_09: SM3IMM( 9, SM3Imm1);
case cJ1_JPIMMED_1_10: SM3IMM(10, SM3Imm1);
case cJ1_JPIMMED_1_11: SM3IMM(11, SM3Imm1);
case cJ1_JPIMMED_1_12: SM3IMM(12, SM3Imm1);
case cJ1_JPIMMED_1_13: SM3IMM(13, SM3Imm1);
case cJ1_JPIMMED_1_14: SM3IMM(14, SM3Imm1);
case cJ1_JPIMMED_1_15: SM3IMM(15, SM3Imm1);
#endif
SM3Imm1: JU_SETDIGIT1(*PIndex, ((uint8_t *) PJI)[offset]);
JU_RET_FOUND_IMM(Pjp, offset);
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_2_02: SM3IMM(2, SM3Imm2);
case cJU_JPIMMED_2_03: SM3IMM(3, SM3Imm2);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_2_04: SM3IMM(4, SM3Imm2);
case cJ1_JPIMMED_2_05: SM3IMM(5, SM3Imm2);
case cJ1_JPIMMED_2_06: SM3IMM(6, SM3Imm2);
case cJ1_JPIMMED_2_07: SM3IMM(7, SM3Imm2);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
SM3Imm2: *PIndex = (*PIndex & (~JU_LEASTBYTESMASK(2)))
| ((uint16_t *) PJI)[offset];
JU_RET_FOUND_IMM(Pjp, offset);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
case cJU_JPIMMED_3_02: SM3IMM(2, SM3Imm3);
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_3_03: SM3IMM(3, SM3Imm3);
case cJ1_JPIMMED_3_04: SM3IMM(4, SM3Imm3);
case cJ1_JPIMMED_3_05: SM3IMM(5, SM3Imm3);
#endif
#if (defined(JUDY1) || defined(JU_64BIT))
SM3Imm3:
{
Word_t lsb;
JU_COPY3_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (3 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(3))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
#endif
#if (defined(JUDY1) && defined(JU_64BIT))
case cJ1_JPIMMED_4_02: SM3IMM(2, SM3Imm4);
case cJ1_JPIMMED_4_03: SM3IMM(3, SM3Imm4);
SM3Imm4: *PIndex = (*PIndex & (~JU_LEASTBYTESMASK(4)))
| ((uint32_t *) PJI)[offset];
JU_RET_FOUND_IMM(Pjp, offset);
case cJ1_JPIMMED_5_02: SM3IMM(2, SM3Imm5);
case cJ1_JPIMMED_5_03: SM3IMM(3, SM3Imm5);
SM3Imm5:
{
Word_t lsb;
JU_COPY5_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (5 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(5))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
case cJ1_JPIMMED_6_02: SM3IMM(2, SM3Imm6);
SM3Imm6:
{
Word_t lsb;
JU_COPY6_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (6 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(6))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
case cJ1_JPIMMED_7_02: SM3IMM(2, SM3Imm7);
SM3Imm7:
{
Word_t lsb;
JU_COPY7_PINDEX_TO_LONG(lsb, ((uint8_t *) PJI) + (7 * offset));
*PIndex = (*PIndex & (~JU_LEASTBYTESMASK(7))) | lsb;
JU_RET_FOUND_IMM(Pjp, offset);
}
#endif // (JUDY1 && JU_64BIT)
// ----------------------------------------------------------------------------
// OTHER CASES:
default: JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT);
JUDY1CODE(return(JERRI );)
JUDYLCODE(return(PPJERR);)
} // SM3Findlimit switch.
/*NOTREACHED*/
} // Judy1Prev() / Judy1Next() / JudyLPrev() / JudyLNext()