amxmodx/dlls/metamapx/metamap.cpp
Johnny Bergström 9d200888ff Initial import
2005-04-29 22:47:00 +00:00

461 lines
15 KiB
C++
Executable File

#include "metamap.h"
bool& VisitedAccess(unsigned int col, unsigned int lin, bool* visited)
{
return visited[lin * COLUMNS + col];
}
cell* MatrixWrite(UINT col, UINT lin, cell* theMatrix)
{
return &(theMatrix[lin * COLUMNS + col]);
//return &(crossword.at());
}
const cell* MatrixRead(UINT col, UINT lin, cell* theMatrix)
{
return &(theMatrix[lin * COLUMNS + col]);
//return &(crossword.at());
}
void AddSpace(int column, int line, vector<CSpace>& spaces)
{
spaces.push_back(CSpace(column, line));
}
void EmptyMatrix(cell* theMatrix) {
for (UINT i = 0; i < COLUMNS; i++) {
for (UINT j = 0; j < LINES; j++) {
*(MatrixWrite(i, j, theMatrix)) = SPACE_EMPTY;
}
}
}
bool BoundaryAndWallCheck(const UINT column, const UINT line, bool* CRvisited, cell* theMatrix)
{
if (column >= 0 && column < COLUMNS && line >= 0 && line < LINES) {
// That's boundaries, now walls, and visited!
if (*MatrixRead(column, line, theMatrix) == SPACE_EMPTY) //if (theMatrix[column][line] == SPACE_EMPTY) {
if (!(VisitedAccess(column, line, CRvisited)))//if (!CRvisited[column][line])
return true;
/*else {
cout << "Visited" << column << ',' << line << '!';
}*/
}
return false;
}
int Difference(int i, int j) {
if (i > j)
return i - j;
else
return j - i;
}
bool CheckReach(const UINT currentColumn, const UINT currentLine, const UINT targetColumn, const UINT targetLine, bool* CRvisited, cell* theMatrix)
{
//cout << '>' << currentColumn << ',' << currentLine;
if (currentColumn < 0 || currentColumn >= COLUMNS || currentLine < 0 || currentLine >= LINES
|| targetColumn < 0 || targetColumn >= COLUMNS || targetLine < 0 || targetLine >= LINES) {
MF_Log("Metamap: Out of range in CheckReach! currentColumn %d currentLine %d targetColumn %d targetLine %d");
throw;
}
// This should happen when the spaces are directly next to each other.
if (currentColumn == targetColumn && Difference(currentLine, targetLine) == 1
|| currentLine == targetLine && Difference(currentColumn, targetColumn) == 1) {
//cout << "Returns yes here because " << currentColumn << "," << currentLine << " and " << targetColumn << "," << targetLine << " are next to each other.";
//cout << "=nextTo";
return true;
}
else if (*MatrixRead(currentColumn, currentLine, theMatrix) == SPACE_WALL) //else if (theMatrix[currentColumn][currentLine] == SPACE_WALL)
return false;
(VisitedAccess(currentColumn, currentLine, CRvisited)) = true; //CRvisited[currentColumn][currentLine] = true;
// Spaces are now at least two manhattan units from each other.
// Try to go in the general direction of target (should be one or two possibilites here, depending on if we are on the same line/column or not)
bool goLeft = false, goUp = false, goRight = false, goDown = false;
if (targetColumn < currentColumn)
goLeft = true;
else if (targetColumn > currentColumn)
goRight = true;
if (targetLine < currentLine)
goUp = true;
else if (targetLine > currentLine)
goDown = true;
// Left
int leftColumn = currentColumn - 1;
int leftLine = currentLine;
// Up
int upColumn = currentColumn;
int upLine = currentLine - 1;
// Right
int rightColumn = currentColumn + 1;
int rightLine = currentLine;
// Down
int downColumn = currentColumn;
int downLine = currentLine + 1;
int nextColumn[4], nextLine[4];
bool nextCheck[4];
if (goLeft) {
nextColumn[0] = leftColumn;
nextLine[0] = leftLine;
nextCheck[0] = BoundaryAndWallCheck(nextColumn[0], nextLine[0], CRvisited, theMatrix);
if (goUp) {
nextColumn[1] = upColumn;
nextLine[1] = upLine;
nextCheck[1] = BoundaryAndWallCheck(nextColumn[1], nextLine[1], CRvisited, theMatrix);
nextColumn[2] = downColumn;
nextLine[2] = downLine;
nextCheck[2] = BoundaryAndWallCheck(nextColumn[2], nextLine[2], CRvisited, theMatrix);
nextColumn[3] = rightColumn;
nextLine[3] = rightLine;
nextCheck[3] = BoundaryAndWallCheck(nextColumn[3], nextLine[3], CRvisited, theMatrix);
}
else {
nextColumn[1] = downColumn;
nextLine[1] = downLine;
nextCheck[1] = BoundaryAndWallCheck(nextColumn[1], nextLine[1], CRvisited, theMatrix);
nextColumn[2] = upColumn;
nextLine[2] = upLine;
nextCheck[2] = BoundaryAndWallCheck(nextColumn[2], nextLine[2], CRvisited, theMatrix);
nextColumn[3] = rightColumn;
nextLine[3] = rightLine;
nextCheck[3] = BoundaryAndWallCheck(nextColumn[3], nextLine[3], CRvisited, theMatrix);
}
}
else if (goRight) {
nextColumn[0] = rightColumn;
nextLine[0] = rightLine;
nextCheck[0] = BoundaryAndWallCheck(nextColumn[0], nextLine[0], CRvisited, theMatrix);
if (goUp) {
nextColumn[1] = upColumn;
nextLine[1] = upLine;
nextCheck[1] = BoundaryAndWallCheck(nextColumn[1], nextLine[1], CRvisited, theMatrix);
nextColumn[2] = downColumn;
nextLine[2] = downLine;
nextCheck[2] = BoundaryAndWallCheck(nextColumn[2], nextLine[2], CRvisited, theMatrix);
nextColumn[3] = leftColumn;
nextLine[3] = leftLine;
nextCheck[3] = BoundaryAndWallCheck(nextColumn[3], nextLine[3], CRvisited, theMatrix);
}
else {
nextColumn[1] = downColumn;
nextLine[1] = downLine;
nextCheck[1] = BoundaryAndWallCheck(nextColumn[1], nextLine[1], CRvisited, theMatrix);
nextColumn[2] = upColumn;
nextLine[2] = upLine;
nextCheck[2] = BoundaryAndWallCheck(nextColumn[2], nextLine[2], CRvisited, theMatrix);
nextColumn[3] = leftColumn;
nextLine[3] = leftLine;
nextCheck[3] = BoundaryAndWallCheck(nextColumn[3], nextLine[3], CRvisited, theMatrix);
}
}
else {
if (goUp) {
nextColumn[0] = upColumn;
nextLine[0] = upLine;
nextCheck[0] = BoundaryAndWallCheck(nextColumn[0], nextLine[0], CRvisited, theMatrix);
nextColumn[1] = leftColumn;
nextLine[1] = leftLine;
nextCheck[1] = BoundaryAndWallCheck(nextColumn[1], nextLine[1], CRvisited, theMatrix);
nextColumn[2] = rightColumn;
nextLine[2] = rightLine;
nextCheck[2] = BoundaryAndWallCheck(nextColumn[2], nextLine[2], CRvisited, theMatrix);
nextColumn[3] = downColumn;
nextLine[3] = downLine;
nextCheck[3] = BoundaryAndWallCheck(nextColumn[3], nextLine[3], CRvisited, theMatrix);
}
else {
nextColumn[0] = downColumn;
nextLine[0] = downLine;
nextCheck[0] = BoundaryAndWallCheck(nextColumn[0], nextLine[0], CRvisited, theMatrix);
nextColumn[1] = leftColumn;
nextLine[1] = leftLine;
nextCheck[1] = BoundaryAndWallCheck(nextColumn[1], nextLine[1], CRvisited, theMatrix);
nextColumn[2] = rightColumn;
nextLine[2] = rightLine;
nextCheck[2] = BoundaryAndWallCheck(nextColumn[2], nextLine[2], CRvisited, theMatrix);
nextColumn[3] = upColumn;
nextLine[3] = upLine;
nextCheck[3] = BoundaryAndWallCheck(nextColumn[3], nextLine[3], CRvisited, theMatrix);
}
}
for (int i = 0; i < 4; i++) {
if (nextCheck[i] && CheckReach(nextColumn[i], nextLine[i], targetColumn, targetLine, CRvisited, theMatrix)) {
return true;
}
}
return false;
}
bool CheckReaches(const UINT column, const UINT line, cell* theMatrix) {
// can left, up, right and down still reach each other? if so, this move can be done.
// Can left reach up, can up reach right, and can right reach down = good move.
bool checkSpaces[4];
int columns[4]; // These CANNOT be UINT! Evaluted >0 with expected possibility of going below 0!
int lines[4]; // These CANNOT be UINT! Evaluted >0 with expected possibility of going below 0!
// Left
columns[0] = column - 1;
lines[0] = line;
// Boundary + wall check //checkSpaces[0] = columns[0] >= 0 ? (theMatrix[columns[0]][lines[0]] == SPACE_EMPTY ? true : false) : false; // Boundary + wall check
checkSpaces[0] = columns[0] >= 0 ? (*MatrixRead(columns[0], lines[0], theMatrix) == SPACE_EMPTY ? true : false) : false;
// Up
columns[1] = column;
lines[1] = line - 1;
//checkSpaces[1] = lines[1] >= 0 ? (theMatrix[columns[1]][lines[1]] == SPACE_EMPTY ? true : false) : false; // Boundary + wall check
checkSpaces[1] = lines[1] >= 0 ? (*MatrixRead(columns[1], lines[1], theMatrix) == SPACE_EMPTY ? true : false) : false;
// Right
columns[2] = column + 1;
lines[2] = line;
//checkSpaces[2] = columns[2] < COLUMNS ? (theMatrix[columns[2]][lines[2]] == SPACE_EMPTY ? true : false) : false; // Boundary + wall check
checkSpaces[2] = columns[2] < (int)COLUMNS ? (*MatrixRead(columns[2], lines[2], theMatrix) == SPACE_EMPTY ? true : false) : false;
// Down
columns[3] = column;
lines[3] = line + 1;
//checkSpaces[3] = lines[3] < LINES ? (theMatrix[columns[3]][lines[3]] == SPACE_EMPTY ? true : false) : false; // Boundary + wall check
checkSpaces[3] = lines[3] < (int)LINES ? (*MatrixRead(columns[3], lines[3], theMatrix) == SPACE_EMPTY ? true : false) : false;
for (int j = 0, spacesToCheck = 0; j < 4; j++) {
if (checkSpaces[j])
spacesToCheck++;
}
if (spacesToCheck == 1) {
// If only one space to check, the other are already used by walls or out of bounds, so don't bother checking anything more, just return true!
return true;
}
else if (spacesToCheck == 0) {
// If this is ever 0, we probably made an error earlier?
//PrintMatrix(column, line);
//cout << "Should check around: " << column << ',' << line << " is " << ((theMatrix[column][line] == SPACE_EMPTY) ? "empty" : "a wall") << endl;
MF_Log("Metamap: Error - unreachable area may have been created earlier, quitting...");
throw;
}
//cout << "Should find " << spacesToCheck << " connections." << endl;
//int connectionsToFind
bool reaches;
int tested = 0;
int connections = 0;
//vector<bool> CRvisited; <-- burn in hell, STL! :-D
//CRvisited.resize(COLUMNS * LINES);
bool* visited = new bool[COLUMNS * LINES];
//EmptyMatrix(theMatrix, visited);
//bool CRvisited[COLUMNS][LINES];
for (UINT i = 0; i < 4; i++) {
if (!checkSpaces[i])
continue;
// We should be able to return true here, because if A can reach B, B can also reach A. :-)
//if (connections == 1 && spacesToCheck == 2)
//return true;
reaches = false;
tested = 0;
for (UINT j = i + 1; tested < 4; j++) {
if (j == 4)
j = 0;
tested++; // we have tested this direction
if (i == j || !checkSpaces[j])
continue;
//cout << "Can " << columns[i] << ',' << lines[i] << " reach " << columns[j] << ',' << lines[j] << '?';
for (UINT l = 0; l < LINES; l++) {
for (UINT k = 0; k < COLUMNS; k++) {
(VisitedAccess(k, l, visited)) = false;//CRvisited[l][k] = false;
}
}
//MF_Log("i: %d, calls CheckReach(%d, %d, %d, %d, CRvisited, theMatrix)", i, columns[i], lines[i], columns[j], lines[j]);
if (CheckReach(columns[i], lines[i], columns[j], lines[j], visited, theMatrix)) {
//cout << " Yes, " << columns[i] << ',' << lines[i] << " reaches " << columns[j] << ',' << lines[j] << ", indexes " << i << " and " << j << '.' << endl;
reaches = true;
connections++;
break; // break, don't check this space anymore, go on check with the rest.
}
else {
// Really, if A cannot ever reach B, it does not matter if A can reach C! :-)
delete [] visited;
return false;
}
//cout << " No!" << endl;
}
// If we can't reach any of the other spaces, return false here.
if (!reaches) {
//cout << columns[i] << ',' << lines[i] << " can't reach any other space! Returning false here..." << endl;
delete [] visited;
return false;
}
}
delete [] visited;
return true;
}
bool PlaceWalls2(const UINT WALLSTOPLACE, cell* theMatrix)
{
if (WALLSTOPLACE > COLUMNS * LINES) {
MF_Log("Metamap: Too many walls!");
return false;
}
UINT wallsPlaced = 0;
// Find all empty spaces, add them to vector.
vector<CSpace> emptySpaces;
//int round = 0;
while (wallsPlaced < WALLSTOPLACE) {
//round++;
//cout << "Starting new round, we should place " << wallsToPlace << " but have so far only placed " << wallsPlaced << " walls." << endl;
//system("PAUSE");
for (UINT i = 0, empties = 0; i < COLUMNS; i++) {
for (UINT j = 0; j < LINES; j++) {
if (*(MatrixRead(i, j, theMatrix)) == SPACE_EMPTY) { // if (theMatrix[i][j] == SPACE_EMPTY) {
AddSpace(i, j, emptySpaces);
empties++;
}
}
}
#if defined _debug
MF_Log("Added %d empty spaces... %d elements in emptySpaces", empties, emptySpaces.size());
#endif
for (UINT column, line, element; wallsPlaced < WALLSTOPLACE && !emptySpaces.empty(); wallsPlaced++) {
element = JBRandom::JBRandomize(0, emptySpaces.size() - 1);
column = emptySpaces[element].column;
line = emptySpaces[element].line;
//MF_Log("element %d in column %d, line %d", element, column, line);
*(MatrixWrite(column, line, theMatrix)) = SPACE_WALL;// theMatrix[column][line] = SPACE_WALL;
//PrintMatrix(column, line);
// Is it possible to place a wall here without blocking anything?
if (!CheckReaches(column, line, theMatrix)) {
//cout << "No!" << endl;
*(MatrixWrite(column, line, theMatrix)) = SPACE_EMPTY; //theMatrix[column][line] = SPACE_EMPTY;
wallsPlaced--;
//system("PAUSE");
}
emptySpaces.erase(&emptySpaces[element]);
//cout << emptySpaces.size() << endl;
//system("PAUSE");
}
//cout << "One round ready..." << endl;
//PrintMatrix();
//system("PAUSE");
}
return true;
}
void CountWalls(cell* theMatrix) {
int walls = 0, empties = 0, others = 0;
for (UINT i = 0; i < LINES * COLUMNS; i++) {
if (theMatrix[i] == SPACE_EMPTY)
empties++;
else if (theMatrix[i] == SPACE_WALL)
walls++;
else
others++;
}
MF_Log("Walls: %d empties: %d others: %d", walls, empties, others);
}
static cell AMX_NATIVE_CALL metamap_getmap(AMX *amx, cell *params) // native metamap_getmap(matrix[], columns, lines, walls); = 4 params
{
#if defined _DEBUG
MF_Log("metamap_getmap start");
#endif
g_amx = amx;
// Get matrix
cell* theMatrix = MF_GetAmxAddr(amx, params[1]);
// Get rest of the parameters
COLUMNS = params[2];
LINES = params[3];
const int WALLS = params[4];
if (COLUMNS <= 0) {
MF_Log("Too few columns! (%d)", COLUMNS);
MF_RaiseAmxError(g_amx, AMX_ERR_NATIVE);
return 0;
}
else if (LINES <= 0) {
MF_Log("Too few lines! (%d)", LINES);
MF_RaiseAmxError(g_amx, AMX_ERR_NATIVE);
return 0;
}
else if (WALLS <= 0) {
MF_Log("Too few walls! (%d)", WALLS);
MF_RaiseAmxError(g_amx, AMX_ERR_NATIVE);
return 0;
}
try {
EmptyMatrix(theMatrix);
#if defined _DEBUG
CountWalls(theMatrix);
#endif
if (!PlaceWalls2(WALLS, theMatrix)) {
MF_RaiseAmxError(g_amx, AMX_ERR_NATIVE);
return 0;
}
#if defined _DEBUG
MF_Log("After placing walls:");
CountWalls(theMatrix);
#endif
}
catch (...) {
MF_Log("Metamap, main: Unhandled exception.");
MF_RaiseAmxError(g_amx, AMX_ERR_NATIVE);
return 0;
}
#if defined _DEBUG
MF_Log("metamap_getmap end");
#endif
return 1;
}
/******************************************************************************************/
AMX_NATIVE_INFO metamap_Exports[] = {
{"metamap_getmap", metamap_getmap},
/////////////////// <--- 19 chars max
{NULL, NULL}
};
void OnAmxxAttach()
{
MF_AddNatives(metamap_Exports);
}