c071f53f2c
Replace the only hasher called MD5 with the ones listed below. (+) CRC32, MD5, SHA1, SHA256, SHA3 224 BIT, SHA3 256 BIT, SHA3 384 BIT, SHA3 512 BIT, Keccak 224 BIT, Keccak 256 BIT, Keccak 384 BIT and Keccak 512 BIT. Add the natives listed below. (+) hash_string(const string[], hashType:type, output[], const outputSize) (+) hash_file(const fileName, hashType:type, output[], const outputSize) (+) is_arkshine_a_doctor() : Hidden native, but a sign of recompense for him being very active since 1.8.3 version of AMX Mod X (+) get_system_endianness() : Checks if the system is currently Big Endian or Little Endian. Add the following Enum. (+) hashType {} (+) sysEndianness {} Deprecate the following natives. (-) amx_md5() (-) amx_md5_file() It has been tested on Windows and Linux. The sanity checks seems to be properly working, so no worries about them. These are useful if people are using Sockets, cURLs or MySQLs in order to compare hashes of different files On-line for further investigation. You are not able to check if the files are older or newer, but you can see if the content is different (Hash Checksum mismatch). I'm glad I did this. Thanks to
281 lines
7.5 KiB
C++
281 lines
7.5 KiB
C++
// //////////////////////////////////////////////////////////
|
|
// keccak.cpp
|
|
// Copyright (c) 2014 Stephan Brumme. All rights reserved.
|
|
// see http://create.stephan-brumme.com/disclaimer.html
|
|
//
|
|
|
|
#include "keccak.h"
|
|
|
|
|
|
/// same as reset()
|
|
Keccak::Keccak(Bits bits)
|
|
: m_blockSize(200 - 2 * (bits / 8)),
|
|
m_bits(bits)
|
|
{
|
|
reset();
|
|
}
|
|
|
|
/// same as reset()
|
|
void Keccak::changeBits(Bits bits)
|
|
{
|
|
m_blockSize = (200 - 2 * (bits / 8));
|
|
m_bits = bits;
|
|
|
|
reset();
|
|
}
|
|
|
|
/// restart
|
|
void Keccak::reset()
|
|
{
|
|
for (size_t i = 0; i < StateSize; i++)
|
|
m_hash[i] = 0;
|
|
|
|
m_numBytes = 0;
|
|
m_bufferSize = 0;
|
|
}
|
|
|
|
|
|
/// constants and local helper functions
|
|
namespace
|
|
{
|
|
const unsigned int KeccakRounds = 24;
|
|
const uint64_t XorMasks[KeccakRounds] =
|
|
{
|
|
0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL,
|
|
0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL,
|
|
0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL,
|
|
0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
|
|
0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL,
|
|
0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL,
|
|
0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL,
|
|
0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL
|
|
};
|
|
|
|
/// rotate left and wrap around to the right
|
|
inline uint64_t rotateLeft(uint64_t x, uint8_t numBits)
|
|
{
|
|
return (x << numBits) | (x >> (64 - numBits));
|
|
}
|
|
|
|
/// convert litte vs big endian
|
|
inline uint64_t swap(uint64_t x)
|
|
{
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
return __builtin_bswap64(x);
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
return _byteswap_uint64(x);
|
|
#endif
|
|
|
|
return (x >> 56) |
|
|
((x >> 40) & 0x000000000000FF00ULL) |
|
|
((x >> 24) & 0x0000000000FF0000ULL) |
|
|
((x >> 8) & 0x00000000FF000000ULL) |
|
|
((x << 8) & 0x000000FF00000000ULL) |
|
|
((x << 24) & 0x0000FF0000000000ULL) |
|
|
((x << 40) & 0x00FF000000000000ULL) |
|
|
(x << 56);
|
|
}
|
|
|
|
|
|
/// return x % 5 for 0 <= x <= 9
|
|
unsigned int mod5(unsigned int x)
|
|
{
|
|
if (x < 5)
|
|
return x;
|
|
|
|
return x - 5;
|
|
}
|
|
}
|
|
|
|
|
|
/// process a full block
|
|
void Keccak::processBlock(const void* data)
|
|
{
|
|
#if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && (__BYTE_ORDER == __BIG_ENDIAN)
|
|
#define LITTLEENDIAN(x) swap(x)
|
|
#else
|
|
#define LITTLEENDIAN(x) (x)
|
|
#endif
|
|
|
|
const uint64_t* data64 = (const uint64_t*) data;
|
|
// mix data into state
|
|
for (unsigned int i = 0; i < m_blockSize / 8; i++)
|
|
m_hash[i] ^= LITTLEENDIAN(data64[i]);
|
|
|
|
// re-compute state
|
|
for (unsigned int round = 0; round < KeccakRounds; round++)
|
|
{
|
|
// Theta
|
|
uint64_t coefficients[5];
|
|
for (unsigned int i = 0; i < 5; i++)
|
|
coefficients[i] = m_hash[i] ^ m_hash[i + 5] ^ m_hash[i + 10] ^ m_hash[i + 15] ^ m_hash[i + 20];
|
|
|
|
for (unsigned int i = 0; i < 5; i++)
|
|
{
|
|
uint64_t one = coefficients[mod5(i + 4)] ^ rotateLeft(coefficients[mod5(i + 1)], 1);
|
|
m_hash[i ] ^= one;
|
|
m_hash[i + 5] ^= one;
|
|
m_hash[i + 10] ^= one;
|
|
m_hash[i + 15] ^= one;
|
|
m_hash[i + 20] ^= one;
|
|
}
|
|
|
|
// temporary
|
|
uint64_t one;
|
|
|
|
// Rho Pi
|
|
uint64_t last = m_hash[1];
|
|
one = m_hash[10]; m_hash[10] = rotateLeft(last, 1); last = one;
|
|
one = m_hash[ 7]; m_hash[ 7] = rotateLeft(last, 3); last = one;
|
|
one = m_hash[11]; m_hash[11] = rotateLeft(last, 6); last = one;
|
|
one = m_hash[17]; m_hash[17] = rotateLeft(last, 10); last = one;
|
|
one = m_hash[18]; m_hash[18] = rotateLeft(last, 15); last = one;
|
|
one = m_hash[ 3]; m_hash[ 3] = rotateLeft(last, 21); last = one;
|
|
one = m_hash[ 5]; m_hash[ 5] = rotateLeft(last, 28); last = one;
|
|
one = m_hash[16]; m_hash[16] = rotateLeft(last, 36); last = one;
|
|
one = m_hash[ 8]; m_hash[ 8] = rotateLeft(last, 45); last = one;
|
|
one = m_hash[21]; m_hash[21] = rotateLeft(last, 55); last = one;
|
|
one = m_hash[24]; m_hash[24] = rotateLeft(last, 2); last = one;
|
|
one = m_hash[ 4]; m_hash[ 4] = rotateLeft(last, 14); last = one;
|
|
one = m_hash[15]; m_hash[15] = rotateLeft(last, 27); last = one;
|
|
one = m_hash[23]; m_hash[23] = rotateLeft(last, 41); last = one;
|
|
one = m_hash[19]; m_hash[19] = rotateLeft(last, 56); last = one;
|
|
one = m_hash[13]; m_hash[13] = rotateLeft(last, 8); last = one;
|
|
one = m_hash[12]; m_hash[12] = rotateLeft(last, 25); last = one;
|
|
one = m_hash[ 2]; m_hash[ 2] = rotateLeft(last, 43); last = one;
|
|
one = m_hash[20]; m_hash[20] = rotateLeft(last, 62); last = one;
|
|
one = m_hash[14]; m_hash[14] = rotateLeft(last, 18); last = one;
|
|
one = m_hash[22]; m_hash[22] = rotateLeft(last, 39); last = one;
|
|
one = m_hash[ 9]; m_hash[ 9] = rotateLeft(last, 61); last = one;
|
|
one = m_hash[ 6]; m_hash[ 6] = rotateLeft(last, 20); last = one;
|
|
m_hash[ 1] = rotateLeft(last, 44);
|
|
|
|
// Chi
|
|
for (unsigned int j = 0; j < 25; j += 5)
|
|
{
|
|
// temporaries
|
|
uint64_t one = m_hash[j];
|
|
uint64_t two = m_hash[j + 1];
|
|
|
|
m_hash[j] ^= m_hash[j + 2] & ~two;
|
|
m_hash[j + 1] ^= m_hash[j + 3] & ~m_hash[j + 2];
|
|
m_hash[j + 2] ^= m_hash[j + 4] & ~m_hash[j + 3];
|
|
m_hash[j + 3] ^= one & ~m_hash[j + 4];
|
|
m_hash[j + 4] ^= two & ~one;
|
|
}
|
|
|
|
// Iota
|
|
m_hash[0] ^= XorMasks[round];
|
|
}
|
|
}
|
|
|
|
|
|
/// add arbitrary number of bytes
|
|
void Keccak::add(const void* data, size_t numBytes)
|
|
{
|
|
const uint8_t* current = (const uint8_t*) data;
|
|
|
|
if (m_bufferSize > 0)
|
|
{
|
|
while (numBytes > 0 && m_bufferSize < m_blockSize)
|
|
{
|
|
m_buffer[m_bufferSize++] = *current++;
|
|
numBytes--;
|
|
}
|
|
}
|
|
|
|
// full buffer
|
|
if (m_bufferSize == m_blockSize)
|
|
{
|
|
processBlock((void*)m_buffer);
|
|
m_numBytes += m_blockSize;
|
|
m_bufferSize = 0;
|
|
}
|
|
|
|
// no more data ?
|
|
if (numBytes == 0)
|
|
return;
|
|
|
|
// process full blocks
|
|
while (numBytes >= m_blockSize)
|
|
{
|
|
processBlock(current);
|
|
current += m_blockSize;
|
|
m_numBytes += m_blockSize;
|
|
numBytes -= m_blockSize;
|
|
}
|
|
|
|
// keep remaining bytes in buffer
|
|
while (numBytes > 0)
|
|
{
|
|
m_buffer[m_bufferSize++] = *current++;
|
|
numBytes--;
|
|
}
|
|
}
|
|
|
|
|
|
/// process everything left in the internal buffer
|
|
void Keccak::processBuffer()
|
|
{
|
|
unsigned int blockSize = 200 - 2 * (m_bits / 8);
|
|
|
|
// add padding
|
|
size_t offset = m_bufferSize;
|
|
// add a "1" byte
|
|
m_buffer[offset++] = 1;
|
|
// fill with zeros
|
|
while (offset < blockSize - 1)
|
|
m_buffer[offset++] = 0;
|
|
|
|
// and add a single set bit
|
|
m_buffer[blockSize - 1] = 0x80;
|
|
|
|
processBlock(m_buffer);
|
|
}
|
|
|
|
|
|
/// return latest hash as 16 hex characters
|
|
const char* Keccak::getHash()
|
|
{
|
|
// process remaining bytes
|
|
processBuffer();
|
|
|
|
// convert hash to string
|
|
static const char dec2hex[16 + 1] = "0123456789abcdef";
|
|
|
|
// number of significant elements in hash (uint64_t)
|
|
unsigned int hashLength = m_bits / 64;
|
|
|
|
static char result[128+1];
|
|
size_t written = 0;
|
|
for (unsigned int i = 0; i < hashLength; i++)
|
|
for (unsigned int j = 0; j < 8; j++) // 64 bits => 8 bytes
|
|
{
|
|
// convert a byte to hex
|
|
unsigned char oneByte = (unsigned char) (m_hash[i] >> (8 * j));
|
|
result[written++] = dec2hex[oneByte >> 4];
|
|
result[written++] = dec2hex[oneByte & 15];
|
|
}
|
|
result[written] = 0;
|
|
return (const char *)result;
|
|
}
|
|
|
|
|
|
/// compute Keccak hash of a memory block
|
|
const char* Keccak::operator()(const void* data, size_t numBytes)
|
|
{
|
|
reset();
|
|
add(data, numBytes);
|
|
return getHash();
|
|
}
|
|
|
|
|
|
/// compute Keccak hash of a string, excluding final zero
|
|
const char* Keccak::operator()(const char* text, size_t size)
|
|
{
|
|
reset();
|
|
add(text, size);
|
|
return getHash();
|
|
}
|