c071f53f2c
Replace the only hasher called MD5 with the ones listed below. (+) CRC32, MD5, SHA1, SHA256, SHA3 224 BIT, SHA3 256 BIT, SHA3 384 BIT, SHA3 512 BIT, Keccak 224 BIT, Keccak 256 BIT, Keccak 384 BIT and Keccak 512 BIT. Add the natives listed below. (+) hash_string(const string[], hashType:type, output[], const outputSize) (+) hash_file(const fileName, hashType:type, output[], const outputSize) (+) is_arkshine_a_doctor() : Hidden native, but a sign of recompense for him being very active since 1.8.3 version of AMX Mod X (+) get_system_endianness() : Checks if the system is currently Big Endian or Little Endian. Add the following Enum. (+) hashType {} (+) sysEndianness {} Deprecate the following natives. (-) amx_md5() (-) amx_md5_file() It has been tested on Windows and Linux. The sanity checks seems to be properly working, so no worries about them. These are useful if people are using Sockets, cURLs or MySQLs in order to compare hashes of different files On-line for further investigation. You are not able to check if the files are older or newer, but you can see if the content is different (Hash Checksum mismatch). I'm glad I did this. Thanks to
399 lines
12 KiB
C++
399 lines
12 KiB
C++
// //////////////////////////////////////////////////////////
|
|
// md5.cpp
|
|
// Copyright (c) 2014 Stephan Brumme. All rights reserved.
|
|
// see http://create.stephan-brumme.com/disclaimer.html
|
|
//
|
|
|
|
#include "md5.h"
|
|
|
|
/// same as reset()
|
|
MD5::MD5()
|
|
{
|
|
reset();
|
|
}
|
|
|
|
|
|
/// restart
|
|
void MD5::reset()
|
|
{
|
|
m_numBytes = 0;
|
|
m_bufferSize = 0;
|
|
|
|
// according to RFC 1321
|
|
m_hash[0] = 0x67452301;
|
|
m_hash[1] = 0xefcdab89;
|
|
m_hash[2] = 0x98badcfe;
|
|
m_hash[3] = 0x10325476;
|
|
}
|
|
|
|
|
|
namespace
|
|
{
|
|
// mix functions for processBlock()
|
|
inline uint32_t f1(uint32_t b, uint32_t c, uint32_t d)
|
|
{
|
|
return d ^ (b & (c ^ d)); // original: f = (b & c) | ((~b) & d);
|
|
}
|
|
|
|
inline uint32_t f2(uint32_t b, uint32_t c, uint32_t d)
|
|
{
|
|
return c ^ (d & (b ^ c)); // original: f = (b & d) | (c & (~d));
|
|
}
|
|
|
|
inline uint32_t f3(uint32_t b, uint32_t c, uint32_t d)
|
|
{
|
|
return b ^ c ^ d;
|
|
}
|
|
|
|
inline uint32_t f4(uint32_t b, uint32_t c, uint32_t d)
|
|
{
|
|
return c ^ (b | ~d);
|
|
}
|
|
|
|
inline uint32_t rotate(uint32_t a, uint32_t c)
|
|
{
|
|
return (a << c) | (a >> (32 - c));
|
|
}
|
|
|
|
#if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && (__BYTE_ORDER == __BIG_ENDIAN)
|
|
inline uint32_t swap(uint32_t x)
|
|
{
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
return __builtin_bswap32(x);
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
return _byteswap_ulong(x);
|
|
#endif
|
|
|
|
return (x >> 24) |
|
|
((x >> 8) & 0x0000FF00) |
|
|
((x << 8) & 0x00FF0000) |
|
|
(x << 24);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/// process 64 bytes
|
|
void MD5::processBlock(const void* data)
|
|
{
|
|
// get last hash
|
|
uint32_t a = m_hash[0];
|
|
uint32_t b = m_hash[1];
|
|
uint32_t c = m_hash[2];
|
|
uint32_t d = m_hash[3];
|
|
|
|
// data represented as 16x 32-bit words
|
|
const uint32_t* words = (uint32_t*) data;
|
|
|
|
// computations are little endian, swap data if necessary
|
|
#if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && (__BYTE_ORDER == __BIG_ENDIAN)
|
|
#define LITTLEENDIAN(x) swap(x)
|
|
#else
|
|
#define LITTLEENDIAN(x) (x)
|
|
#endif
|
|
|
|
// first round
|
|
uint32_t word0 = LITTLEENDIAN(words[ 0]);
|
|
a = rotate(a + f1(b,c,d) + word0 + 0xd76aa478, 7) + b;
|
|
uint32_t word1 = LITTLEENDIAN(words[ 1]);
|
|
d = rotate(d + f1(a,b,c) + word1 + 0xe8c7b756, 12) + a;
|
|
uint32_t word2 = LITTLEENDIAN(words[ 2]);
|
|
c = rotate(c + f1(d,a,b) + word2 + 0x242070db, 17) + d;
|
|
uint32_t word3 = LITTLEENDIAN(words[ 3]);
|
|
b = rotate(b + f1(c,d,a) + word3 + 0xc1bdceee, 22) + c;
|
|
|
|
uint32_t word4 = LITTLEENDIAN(words[ 4]);
|
|
a = rotate(a + f1(b,c,d) + word4 + 0xf57c0faf, 7) + b;
|
|
uint32_t word5 = LITTLEENDIAN(words[ 5]);
|
|
d = rotate(d + f1(a,b,c) + word5 + 0x4787c62a, 12) + a;
|
|
uint32_t word6 = LITTLEENDIAN(words[ 6]);
|
|
c = rotate(c + f1(d,a,b) + word6 + 0xa8304613, 17) + d;
|
|
uint32_t word7 = LITTLEENDIAN(words[ 7]);
|
|
b = rotate(b + f1(c,d,a) + word7 + 0xfd469501, 22) + c;
|
|
|
|
uint32_t word8 = LITTLEENDIAN(words[ 8]);
|
|
a = rotate(a + f1(b,c,d) + word8 + 0x698098d8, 7) + b;
|
|
uint32_t word9 = LITTLEENDIAN(words[ 9]);
|
|
d = rotate(d + f1(a,b,c) + word9 + 0x8b44f7af, 12) + a;
|
|
uint32_t word10 = LITTLEENDIAN(words[10]);
|
|
c = rotate(c + f1(d,a,b) + word10 + 0xffff5bb1, 17) + d;
|
|
uint32_t word11 = LITTLEENDIAN(words[11]);
|
|
b = rotate(b + f1(c,d,a) + word11 + 0x895cd7be, 22) + c;
|
|
|
|
uint32_t word12 = LITTLEENDIAN(words[12]);
|
|
a = rotate(a + f1(b,c,d) + word12 + 0x6b901122, 7) + b;
|
|
uint32_t word13 = LITTLEENDIAN(words[13]);
|
|
d = rotate(d + f1(a,b,c) + word13 + 0xfd987193, 12) + a;
|
|
uint32_t word14 = LITTLEENDIAN(words[14]);
|
|
c = rotate(c + f1(d,a,b) + word14 + 0xa679438e, 17) + d;
|
|
uint32_t word15 = LITTLEENDIAN(words[15]);
|
|
b = rotate(b + f1(c,d,a) + word15 + 0x49b40821, 22) + c;
|
|
|
|
// second round
|
|
a = rotate(a + f2(b,c,d) + word1 + 0xf61e2562, 5) + b;
|
|
d = rotate(d + f2(a,b,c) + word6 + 0xc040b340, 9) + a;
|
|
c = rotate(c + f2(d,a,b) + word11 + 0x265e5a51, 14) + d;
|
|
b = rotate(b + f2(c,d,a) + word0 + 0xe9b6c7aa, 20) + c;
|
|
|
|
a = rotate(a + f2(b,c,d) + word5 + 0xd62f105d, 5) + b;
|
|
d = rotate(d + f2(a,b,c) + word10 + 0x02441453, 9) + a;
|
|
c = rotate(c + f2(d,a,b) + word15 + 0xd8a1e681, 14) + d;
|
|
b = rotate(b + f2(c,d,a) + word4 + 0xe7d3fbc8, 20) + c;
|
|
|
|
a = rotate(a + f2(b,c,d) + word9 + 0x21e1cde6, 5) + b;
|
|
d = rotate(d + f2(a,b,c) + word14 + 0xc33707d6, 9) + a;
|
|
c = rotate(c + f2(d,a,b) + word3 + 0xf4d50d87, 14) + d;
|
|
b = rotate(b + f2(c,d,a) + word8 + 0x455a14ed, 20) + c;
|
|
|
|
a = rotate(a + f2(b,c,d) + word13 + 0xa9e3e905, 5) + b;
|
|
d = rotate(d + f2(a,b,c) + word2 + 0xfcefa3f8, 9) + a;
|
|
c = rotate(c + f2(d,a,b) + word7 + 0x676f02d9, 14) + d;
|
|
b = rotate(b + f2(c,d,a) + word12 + 0x8d2a4c8a, 20) + c;
|
|
|
|
// third round
|
|
a = rotate(a + f3(b,c,d) + word5 + 0xfffa3942, 4) + b;
|
|
d = rotate(d + f3(a,b,c) + word8 + 0x8771f681, 11) + a;
|
|
c = rotate(c + f3(d,a,b) + word11 + 0x6d9d6122, 16) + d;
|
|
b = rotate(b + f3(c,d,a) + word14 + 0xfde5380c, 23) + c;
|
|
|
|
a = rotate(a + f3(b,c,d) + word1 + 0xa4beea44, 4) + b;
|
|
d = rotate(d + f3(a,b,c) + word4 + 0x4bdecfa9, 11) + a;
|
|
c = rotate(c + f3(d,a,b) + word7 + 0xf6bb4b60, 16) + d;
|
|
b = rotate(b + f3(c,d,a) + word10 + 0xbebfbc70, 23) + c;
|
|
|
|
a = rotate(a + f3(b,c,d) + word13 + 0x289b7ec6, 4) + b;
|
|
d = rotate(d + f3(a,b,c) + word0 + 0xeaa127fa, 11) + a;
|
|
c = rotate(c + f3(d,a,b) + word3 + 0xd4ef3085, 16) + d;
|
|
b = rotate(b + f3(c,d,a) + word6 + 0x04881d05, 23) + c;
|
|
|
|
a = rotate(a + f3(b,c,d) + word9 + 0xd9d4d039, 4) + b;
|
|
d = rotate(d + f3(a,b,c) + word12 + 0xe6db99e5, 11) + a;
|
|
c = rotate(c + f3(d,a,b) + word15 + 0x1fa27cf8, 16) + d;
|
|
b = rotate(b + f3(c,d,a) + word2 + 0xc4ac5665, 23) + c;
|
|
|
|
// fourth round
|
|
a = rotate(a + f4(b,c,d) + word0 + 0xf4292244, 6) + b;
|
|
d = rotate(d + f4(a,b,c) + word7 + 0x432aff97, 10) + a;
|
|
c = rotate(c + f4(d,a,b) + word14 + 0xab9423a7, 15) + d;
|
|
b = rotate(b + f4(c,d,a) + word5 + 0xfc93a039, 21) + c;
|
|
|
|
a = rotate(a + f4(b,c,d) + word12 + 0x655b59c3, 6) + b;
|
|
d = rotate(d + f4(a,b,c) + word3 + 0x8f0ccc92, 10) + a;
|
|
c = rotate(c + f4(d,a,b) + word10 + 0xffeff47d, 15) + d;
|
|
b = rotate(b + f4(c,d,a) + word1 + 0x85845dd1, 21) + c;
|
|
|
|
a = rotate(a + f4(b,c,d) + word8 + 0x6fa87e4f, 6) + b;
|
|
d = rotate(d + f4(a,b,c) + word15 + 0xfe2ce6e0, 10) + a;
|
|
c = rotate(c + f4(d,a,b) + word6 + 0xa3014314, 15) + d;
|
|
b = rotate(b + f4(c,d,a) + word13 + 0x4e0811a1, 21) + c;
|
|
|
|
a = rotate(a + f4(b,c,d) + word4 + 0xf7537e82, 6) + b;
|
|
d = rotate(d + f4(a,b,c) + word11 + 0xbd3af235, 10) + a;
|
|
c = rotate(c + f4(d,a,b) + word2 + 0x2ad7d2bb, 15) + d;
|
|
b = rotate(b + f4(c,d,a) + word9 + 0xeb86d391, 21) + c;
|
|
|
|
// update hash
|
|
m_hash[0] += a;
|
|
m_hash[1] += b;
|
|
m_hash[2] += c;
|
|
m_hash[3] += d;
|
|
}
|
|
|
|
|
|
/// add arbitrary number of bytes
|
|
void MD5::add(const void* data, size_t numBytes)
|
|
{
|
|
const uint8_t* current = (const uint8_t*) data;
|
|
|
|
if (m_bufferSize > 0)
|
|
{
|
|
while (numBytes > 0 && m_bufferSize < BlockSize)
|
|
{
|
|
m_buffer[m_bufferSize++] = *current++;
|
|
numBytes--;
|
|
}
|
|
}
|
|
|
|
// full buffer
|
|
if (m_bufferSize == BlockSize)
|
|
{
|
|
processBlock(m_buffer);
|
|
m_numBytes += BlockSize;
|
|
m_bufferSize = 0;
|
|
}
|
|
|
|
// no more data ?
|
|
if (numBytes == 0)
|
|
return;
|
|
|
|
// process full blocks
|
|
while (numBytes >= BlockSize)
|
|
{
|
|
processBlock(current);
|
|
current += BlockSize;
|
|
m_numBytes += BlockSize;
|
|
numBytes -= BlockSize;
|
|
}
|
|
|
|
// keep remaining bytes in buffer
|
|
while (numBytes > 0)
|
|
{
|
|
m_buffer[m_bufferSize++] = *current++;
|
|
numBytes--;
|
|
}
|
|
}
|
|
|
|
|
|
/// process final block, less than 64 bytes
|
|
void MD5::processBuffer()
|
|
{
|
|
// the input bytes are considered as bits strings, where the first bit is the most significant bit of the byte
|
|
|
|
// - append "1" bit to message
|
|
// - append "0" bits until message length in bit mod 512 is 448
|
|
// - append length as 64 bit integer
|
|
|
|
// number of bits
|
|
size_t paddedLength = m_bufferSize * 8;
|
|
|
|
// plus one bit set to 1 (always appended)
|
|
paddedLength++;
|
|
|
|
// number of bits must be (numBits % 512) = 448
|
|
size_t lower11Bits = paddedLength & 511;
|
|
if (lower11Bits <= 448)
|
|
paddedLength += 448 - lower11Bits;
|
|
else
|
|
paddedLength += 512 + 448 - lower11Bits;
|
|
// convert from bits to bytes
|
|
paddedLength /= 8;
|
|
|
|
// only needed if additional data flows over into a second block
|
|
unsigned char extra[BlockSize];
|
|
|
|
// append a "1" bit, 128 => binary 10000000
|
|
if (m_bufferSize < BlockSize)
|
|
m_buffer[m_bufferSize] = 128;
|
|
else
|
|
extra[0] = 128;
|
|
|
|
size_t i;
|
|
for (i = m_bufferSize + 1; i < BlockSize; i++)
|
|
m_buffer[i] = 0;
|
|
for (; i < paddedLength; i++)
|
|
extra[i - BlockSize] = 0;
|
|
|
|
// add message length in bits as 64 bit number
|
|
uint64_t msgBits = 8 * (m_numBytes + m_bufferSize);
|
|
// find right position
|
|
unsigned char* addLength;
|
|
if (paddedLength < BlockSize)
|
|
addLength = m_buffer + paddedLength;
|
|
else
|
|
addLength = extra + paddedLength - BlockSize;
|
|
|
|
// must be little endian
|
|
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
|
|
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
|
|
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
|
|
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
|
|
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
|
|
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
|
|
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
|
|
*addLength++ = msgBits & 0xFF;
|
|
|
|
// process blocks
|
|
processBlock(m_buffer);
|
|
// flowed over into a second block ?
|
|
if (paddedLength > BlockSize)
|
|
processBlock(extra);
|
|
}
|
|
|
|
|
|
/// return latest hash as 16 hex characters
|
|
const char* MD5::getHash()
|
|
{
|
|
// convert hash to string
|
|
static const char dec2hex[16+1] = "0123456789abcdef";
|
|
|
|
// save old hash if buffer is partially filled
|
|
uint32_t oldHash[4];
|
|
oldHash[0] = m_hash[0];
|
|
oldHash[1] = m_hash[1];
|
|
oldHash[2] = m_hash[2];
|
|
oldHash[3] = m_hash[3];
|
|
|
|
// process remaining bytes
|
|
processBuffer();
|
|
|
|
// create hash string
|
|
static char hashBuffer[4*8+1];
|
|
|
|
hashBuffer[ 0] = dec2hex[(m_hash[0] >> 4) & 15];
|
|
hashBuffer[ 1] = dec2hex[ m_hash[0] & 15];
|
|
hashBuffer[ 2] = dec2hex[(m_hash[0] >> 12) & 15];
|
|
hashBuffer[ 3] = dec2hex[(m_hash[0] >> 8) & 15];
|
|
hashBuffer[ 4] = dec2hex[(m_hash[0] >> 20) & 15];
|
|
hashBuffer[ 5] = dec2hex[(m_hash[0] >> 16) & 15];
|
|
hashBuffer[ 6] = dec2hex[ m_hash[0] >> 28 ];
|
|
hashBuffer[ 7] = dec2hex[(m_hash[0] >> 24) & 15];
|
|
|
|
hashBuffer[ 8] = dec2hex[(m_hash[1] >> 4) & 15];
|
|
hashBuffer[ 9] = dec2hex[ m_hash[1] & 15];
|
|
hashBuffer[10] = dec2hex[(m_hash[1] >> 12) & 15];
|
|
hashBuffer[11] = dec2hex[(m_hash[1] >> 8) & 15];
|
|
hashBuffer[12] = dec2hex[(m_hash[1] >> 20) & 15];
|
|
hashBuffer[13] = dec2hex[(m_hash[1] >> 16) & 15];
|
|
hashBuffer[14] = dec2hex[ m_hash[1] >> 28 ];
|
|
hashBuffer[15] = dec2hex[(m_hash[1] >> 24) & 15];
|
|
|
|
hashBuffer[16] = dec2hex[(m_hash[2] >> 4) & 15];
|
|
hashBuffer[17] = dec2hex[ m_hash[2] & 15];
|
|
hashBuffer[18] = dec2hex[(m_hash[2] >> 12) & 15];
|
|
hashBuffer[19] = dec2hex[(m_hash[2] >> 8) & 15];
|
|
hashBuffer[20] = dec2hex[(m_hash[2] >> 20) & 15];
|
|
hashBuffer[21] = dec2hex[(m_hash[2] >> 16) & 15];
|
|
hashBuffer[22] = dec2hex[ m_hash[2] >> 28 ];
|
|
hashBuffer[23] = dec2hex[(m_hash[2] >> 24) & 15];
|
|
|
|
hashBuffer[24] = dec2hex[(m_hash[3] >> 4) & 15];
|
|
hashBuffer[25] = dec2hex[ m_hash[3] & 15];
|
|
hashBuffer[26] = dec2hex[(m_hash[3] >> 12) & 15];
|
|
hashBuffer[27] = dec2hex[(m_hash[3] >> 8) & 15];
|
|
hashBuffer[28] = dec2hex[(m_hash[3] >> 20) & 15];
|
|
hashBuffer[29] = dec2hex[(m_hash[3] >> 16) & 15];
|
|
hashBuffer[30] = dec2hex[ m_hash[3] >> 28 ];
|
|
hashBuffer[31] = dec2hex[(m_hash[3] >> 24) & 15];
|
|
|
|
// zero-terminated string
|
|
hashBuffer[32] = 0;
|
|
|
|
// restore old hash
|
|
m_hash[0] = oldHash[0];
|
|
m_hash[1] = oldHash[1];
|
|
m_hash[2] = oldHash[2];
|
|
m_hash[3] = oldHash[3];
|
|
|
|
// convert to std::string
|
|
return (const char*)hashBuffer;
|
|
}
|
|
|
|
|
|
/// compute MD5 of a memory block
|
|
const char* MD5::operator()(const void* data, size_t numBytes)
|
|
{
|
|
reset();
|
|
add(data, numBytes);
|
|
return getHash();
|
|
}
|
|
|
|
|
|
/// compute MD5 of a string, excluding final zero
|
|
const char* MD5::operator()(const char* text, size_t size)
|
|
{
|
|
reset();
|
|
add(text, size);
|
|
return getHash();
|
|
}
|